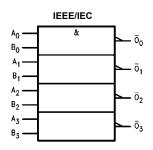
74F00 Quad 2-Input NAND Gate

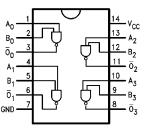
General Description

FAIRCHILD

SEMICONDUCTOR


This device contains four independent gates, each of which performs the logic NAND function.

Ordering Code:


Order Number	Package Number	Package Description
74F00SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow
74F00SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F00PC	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagram

Unit Loading/Fan Out

Pin Names	Description	U.L.	Input I _{IH} /I _{IL}	
	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
A _n , B _n	Inputs	1.0/1.0	20 μA/–0.6 mA	
Ōn	Outputs	50/33.3	–1 mA/20 mA	

© 2000 Fairchild Semiconductor Corporation DS009454

www.fairchildsemi.com

74F00

Absolute Maximum Ratings(Note 1)

Storage Temperature	-65°C to +150°C			
Ambient Temperature under Bias	-55°C to +125°C			
Junction Temperature under Bias	–55°C to +150°C			
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V			
Input Voltage (Note 2)	-0.5V to +7.0V			
Input Current (Note 2)	-30 mA to +5.0 mA			
Voltage Applied to Output				
in HIGH State (with $V_{CC} = 0V$)				
Standard Output	-0.5V to V _{CC}			
3-STATE Output	-0.5V to +5.5V			
Current Applied to Output				
in LOW State (Max)	twice the rated I_{OL} (mA)			
ESD Last Passing Voltage (Min)	4000V			

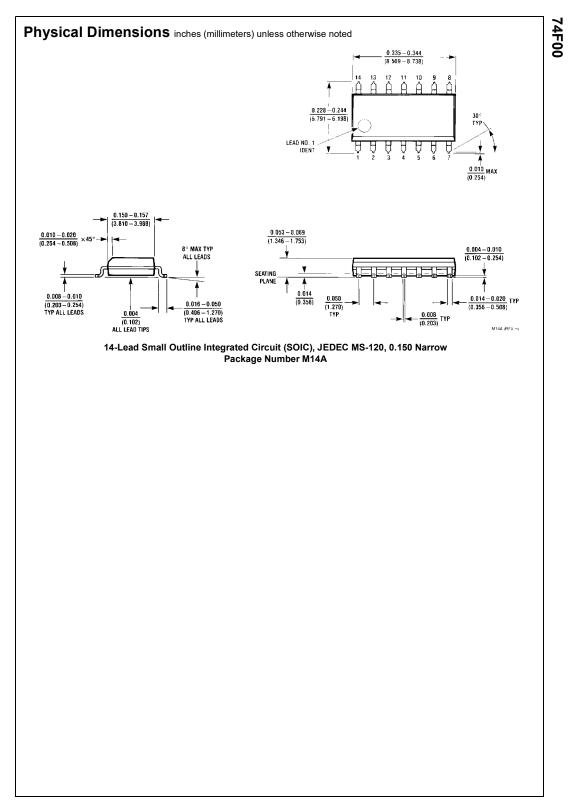
Recommended Operating Conditions

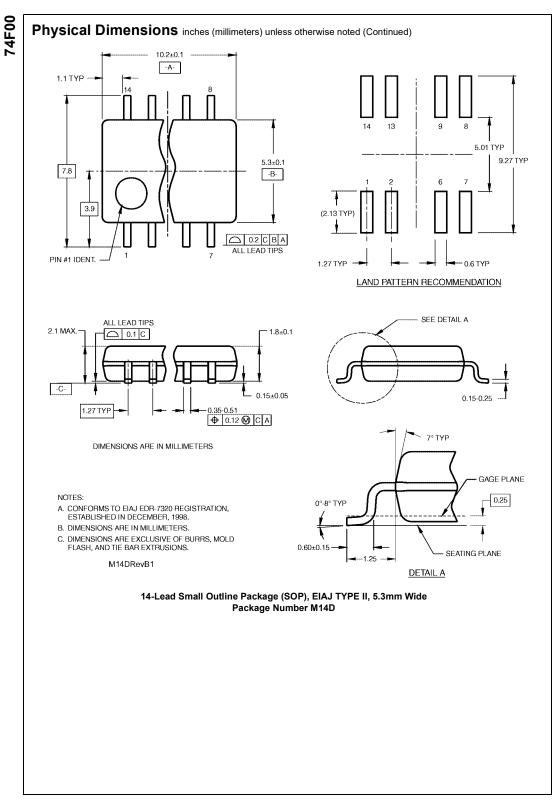
Free Air Ambient Temperature
Supply Voltage

0°C to +70°C +4.5V to +5.5V

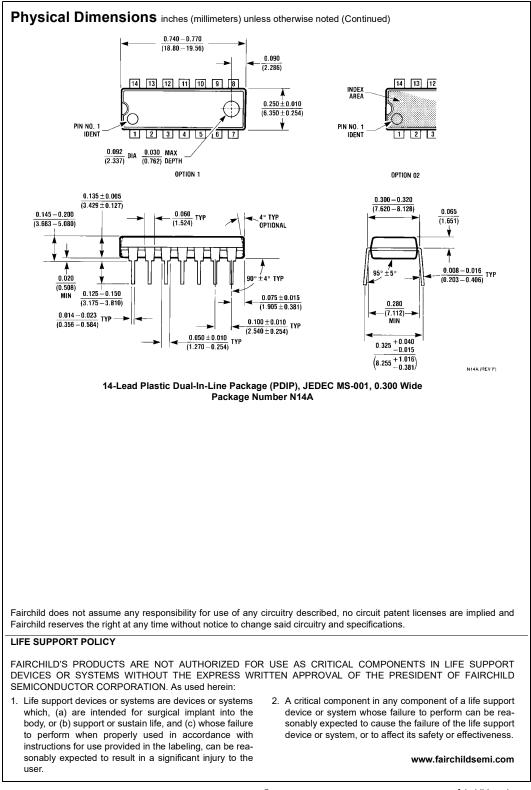
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics


Symbol	Parameter		Min	Тур	Max	Units	V _{cc}	Conditions	
VIH	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage)			-1.2	V	Min	I _{IN} = –18 mA	
V _{OH}	Output HIGH	10% V _{CC}	2.5			V	Min	I _{OH} = –1 mA	
	Voltage	5% V _{CC}	2.7					$I_{OH} = -1 \text{ mA}$	
V _{OL}	Output LOW	10% V _{CC}			0.5	V	Min	I _{OL} = 20 mA	
	Voltage								
I _{IH}	Input HIGH				5.0	μΑ	Max	V _{IN} = 2.7V	
	Current								
I _{BVI}	Input HIGH Current				7.0	μΑ	Max	V _{IN} = 7.0V	
	Breakdown Test								
ICEX	Output HIGH				50	μA	Max	$V_{OUT} = V_{CC}$	
	Leakage Current								
V _{ID}	Input Leakage		4.75			v	0.0	I _{ID} = 1.9 μA	
	Test		4.75			v	0.0	All other pins grounded	
I _{OD}	Output Leakage				3.75		0.0	V _{IOD} = 150 mV	
	Circuit Current				3.75	μΑ	0.0	All other pins grounded	
IIL	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$	
I _{OS}	Output Short-Circuit Curre	nt	-60		_150	mA	Max	V _{OUT} = 0V	
I _{CCH}	Power Supply Current			1.9	2.8	mA	Max	V _O = HIGH	
ICCL	Power Supply Current			6.8	10.2	mA	Max	$V_{O} = LOW$	

AC Electrical Characteristics


Symbol	Parameter	$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$		$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		Units	
		Min	Тур	Max	Min	Max	Min	Мах		
t _{PLH}	Propagation Delay	2.4	3.7	5.0	2.0	7.0	2.4	6.0	ns	
t _{PHL}	$A_n, B_n \text{ to } \overline{O}_n$	1.5	3.2	4.3	1.5	6.5	1.5	5.3	115	

www.fairchildsemi.com

www.fairchildsemi.com

74F00 Quad 2-Input NAND Gate