AD87588

2x20W Stereo / 1x40W Mono Digital Audio Amplifier With 20 Bands EQ Functions + Capless Line Driver

Features

- ◆ 16/18/20/24-bits input with I²S, Left-alignment and Right-alignment data format
- PSNR & DR(A-weighting)
 Loudspeaker: 97dB (PSNR), 105dB (DR) @24V
- Multiple sampling frequencies (Fs)
 32kHz / 44.1kHz / 48kHz and
 64kHz / 88.2kHz / 96kHz and
 128kHz / 176.4kHz / 192kHz
- System clock = 64x, 128x, 192x, 256x, 384x, 512x, 576x, 768x, 1024x Fs
 64x~1024x Fs for 32kHz / 44.1kHz / 48kHz
 64x~512x Fs for 64kHz / 88.2kHz / 96kHz
 64x~256x Fs for 128kHz / 176.4kHz / 192kHz
- Supply voltage
 3.3V for digital circuit
 10V~26V for loudspeaker driver
- Loudspeaker output power for Stereo@24V
 10W x 2ch into 8Ω @0.09% THD+N
 15W x 2ch into 8Ω @0.13% THD+N
 20W x 2ch into 8Ω @0.17% THD+N
- Loudspeaker output power for Mono@24V 20W x 1ch into 8Ω @0.06% THD+N 30W x 1ch into 8Ω @0.09% THD+N 40W x 1ch into 8Ω @0.12% THD+N
- Sound processing including:
 20 bands parametric speaker EQ
 Volume control (+24dB~-103dB, 0.125dB/step),
 Dynamic range control (DRC)
 Dual band dynamic range control
 Power clipping
 3D surround sound
 Channel mixing
 Noise gate with hysteresis window
 Bass management crossover filter
- Anti-pop design

DC-blocking high-pass filter

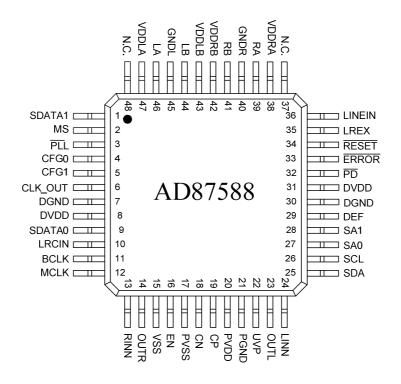
- Short circuit and over-temperature protection
- I²C control interface with selectable device address

- Support hardware and software reset
- Internal PLL
- LV Under-voltage shutdown and HV Under-voltage detection
- Power saving mode
- Support initial EEPROM setting

Applications

- TV audio
- Boom-box, CD and DVD receiver, docking system
- Powered speaker
- Wireless audio

Description


The AD87588 is an integrated audio system solution, embedding digital audio process, power stage amplifier, and a stereo 3Vrms line driver. AD87588 is a digital audio amplifier capable of driving a pair of 8Ω , 20W or a single 4Ω , 40W operating at 24V supply. AD87588 is also capable of driving 4Ω , 10W (SE)x2 + 8Ω , 20W (BTL)x1 at 24V supply for 2.1CH application.

AD87588 can provide advanced audio processing capabilities, such as volume control, 20 bands speaker EQ, audio mixing, 3D surround and Dynamic Range These functions Control (DRC). are programmable via a simple I²C control interface. Robust protection circuits are provided to protect AD87588 from damage due to accidental erroneous operating condition. AD87588 is more tolerant to noise and PVT (Process, Voltage, and Temperature) variation than the analog Class-AB or Class-D audio amplifier counterpart implemented by analog circuit design. AD87588 is pop free during instantaneous power switch because of its built-in, robust anti-pop circuit.

> Publication Date: Oct. 2017 Revision: 1.5 1/71

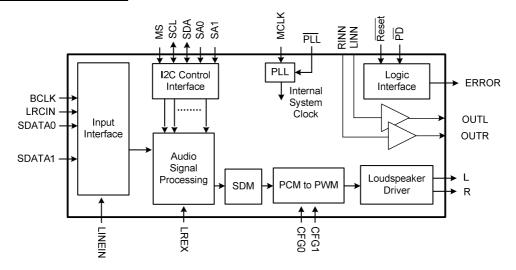
Pin Assignment

Pin Description

PIN	NAME	TYPE	DESCRIPTION	CHARACTERISTICS
1	SDATA1	I	Serial audio data input 1	Schmitt trigger TTL input buffer
2	MS	I	EEPROM selection	Schmitt trigger TTL input buffer
3	PLL	I	PLL enable, low active	Schmitt trigger TTL input buffer
4	CFG0	I	Stereo/Mono/2.1CH configuration pin	Schmitt trigger TTL input buffer
5	CFG1	I	Stereo/Mono/2.1CH configuration pin	Schmitt trigger TTL input buffer
6	CLK_OUT	0	Clock output from PLL	TTL output buffer
7	DGND	Р	Digital Ground (3.3V)	
8	DVDD	Р	Digital Power (3.3V)	
9	SDATA0	I	Serial audio data input 0	Schmitt trigger TTL input buffer
10	LRCIN	I	Left/Right clock input (Fs)	Schmitt trigger TTL input buffer
11	BCLK	I	Bit clock input (64Fs)	Schmitt trigger TTL input buffer
12	MCLK	I	Master clock input	Schmitt trigger TTL input buffer
13	RINN	I	Right input for line driver	
14	ROUT	0	Right output for line driver	
15	SGND	Р	Ground for line driver	
16	EN	I	Enable for line driver	
17	PVSS	Р	Supply voltage for line driver	
40	CNI	10	Charge pump flying capacitor negative	
18	CN	Ю	connection for line driver	

Elite Semiconductor Memory Technology Inc.

Publication Date: Oct. 2017 Revision: 1.5 2/71



19 CP IO Charge pump flying capacitor positive connection for line driver 20 PVDD P Supply voltage for line driver 21 PGND P Ground for line driver	
connection for line driver 20 PVDD P Supply voltage for line driver	
21 PGND P Ground for line driver	
22 UVP I Under voltage protection for line driver	
23 LOUT O Left output for Line driver	
24 LINN I Left input for Line driver	
25 SDA I/O I ² C bi-directional serial data Schmitt trigger TTI	L input buffer
26 SCL I/O I ² C serial clock input Schmitt trigger TTI	L input buffer
27 SA0 I I ² C select address 0 Schmitt trigger TTI	L input buffer
28 SA1 I I ² C select address 1 Schmitt trigger TTI	L input buffer
Initial default volume setting	Linnut huffor
29 DEF I (1:Un-Mute ; 0:Mute) Schmitt trigger TTI	L input buller
30 DGND P Digital Ground (3.3V)	
31 DVDD P Digital Power (3.3V)	
32 PD I Power down, low active Schmitt trigger TTI	L input buffer
33 ERROR O Error status, low active Open-drain output	
34 RESET I Reset, low active Schmitt trigger TTI	L input buffer
Left/Right channel exchange	l innut huffor
35 LREX I (0:Unchanged ; 1:Exchanged) Schmitt trigger TTI	L input buller
Select input data	Linnut huffor
36 LINEIN I (0:SDATA0 ; 1:SDATA1) Schmitt trigger TTI	L input buller
37 N.C.	
38 VDDRA P Right channel supply A	
39 RA O Right channel output A	
40 GNDR P Right channel ground	
41 RB O Right channel output B	
42 VDDRB P Right channel supply B	
43 VDDLB P Left channel supply B	
44 LB O Left channel output B	
45 GNDL P Left channel ground	
46 LA O Left channel output A	
47 VDDLA P Left channel supply A	
48 N.C.	

Publication Date: Oct. 2017 Revision: 1.5 3/71

Functional Block Diagram

Ordering Information

Product ID	Package	Packing / MPQ	Comments
AD87588-LG48NAY	E-LQFP-48L	250 Units / Tray 2.5K Units / Box (10 Tray)	Green
AD87588-LG48NAR	7x7 mm	2K Units Tape & Reel	Green

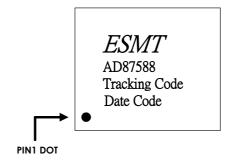
Available Package

Package Type	Device No.	θ ja(°C/W)	Ψ _{jt} (°C/W)	θ jc(°C/W)	Exposed Thermal Pad
E-LQFP 48L (7x7mm)	AD87588	27	1.33	6.0	Yes (Note1)

- Note 1.1: The thermal pad is located at the bottom of the package. To optimize thermal performance, soldering the thermal pad to the PCB's ground plane is suggested.
- Note 1.2: θ_{ja} is measured on a room temperature (T_A =25 \mathcal{C}), natural convection environment test board, which is constructed with a thermally efficient, 4-layers PCB (2S2P). The measurement is tested using the JEDEC51-5 thermal measurement standard.
- Note 1.3: Ψ_{jt} represents the thermal parameter for the heat flow between the chip junction and the package's top surface center. It's extracted from the simulation data for obtaining θ_{ja} , using a procedure described in JESD51-2.
- Note 1.4: Θ_{jc} represents the thermal resistance for the heat flow between the chip junction and the package's bottom surface. It's extracted from the simulation data with obtaining a cold plate on the package bottom.

Publication Date: Oct. 2017 Revision: 1.5 4/71

Marking Information


AD87588

Line 1 : LOGO

Line 2: Product no.

Line 3: Tracking Code

Line 4 : Date Code

Absolute Maximum Ratings

Stresses beyond those listed under <u>absolute maximum ratings</u> may cause permanent damage to the device.

Symbol	Parameter	Min	Max	Units
DVDD	Supply for Digital Circuit	-0.3	3.6	V
VDDL/R	Supply for Driver Stage	-0.3	30	V
PVDD	Supply for Line out	-0.3	6	V
V _i	Input Voltage	-0.3	3.6	V
T _{stg}	Storage Temperature	-65	150	°C
TJ	Junction Operating Temperature	-10	150	°C

Recommended Operating Conditions

Symbol	Parameter	Тур	Units
DVDD	Supply for Digital Circuit	3.15~3.45	V
VDDL/R	Supply for Driver Stage	10~26	V
PVDD	Supply for Line out	3~5.5	V
TJ	Junction Operating Temperature	-10~125	°C
T _A	Ambient Operating Temperature	-10~70	°C

Digital Characteristics

Symbol	Parameter	Min	Тур	Max	Units
V_{IH}	High-Level Input Voltage	2.0			V
V_{IL}	Low-Level Input Voltage			0.8	V
V _{OH}	High-Level Output Voltage	2.4			V
V _{OL}	Low-Level Output Voltage			0.4	V
Cı	Input Capacitance		6.4		pF

Publication Date: Oct. 2017 Revision: 1.5 5/71

General Electrical Characteristics

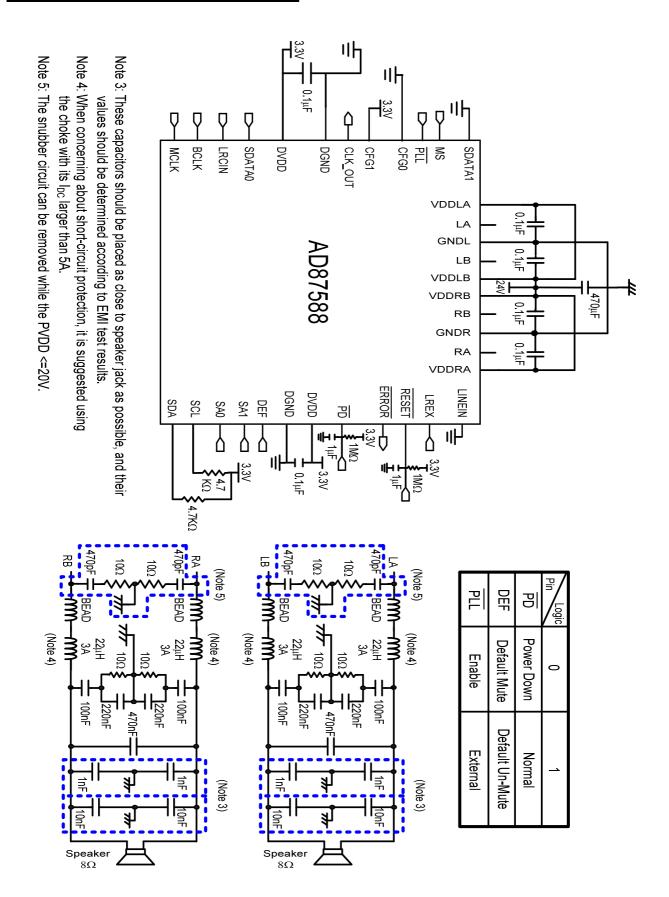
Audio Amplifier

Condition: T_A=25 °C (unless otherwise specified).

Symbol	Parameter	Condition	Min	Тур	Max	Units
I _{PD} (HV)	VDDL/R Supply Current during Power Down	VDDL/R=24V		10	200	uA
I _{PD} (LV)	DVDD Supply Current during Power Down	DVDD=3.3V		4	20	uA
_	Junction Temperature for Driver Shutdown			150		°C
T _{SENSOR}	Temperature Hysteresis for Recovery from Shutdown			30		°C
UV _H	Under Voltage Disabled (For DVDD)			2.8		V
UV∟	Under Voltage Enabled (For DVDD)			2.7		V
Rds-on	Static Drain-to-Source On-state Resistor, PMOS	VDDL/R=24V,		270		mΩ
Nus-on	Static Drain-to-Source On-state Resistor, NMOS	Id=500mA		230		mΩ
	L (P) Channel Over Current Protection (Note 2)	VDDL/R=24V		5		٨
١,	L(R) Channel Over-Current Protection (Note 2)	VDDL/R=12V		2.7		Α
I _{SC}	Mana Channal Over Circuit Protection (Note 2)	VDDL/R=24V		10		Α
	Mono Channel Over-Circuit Protection (Note 2)	VDDL/R=12V		5.4		A

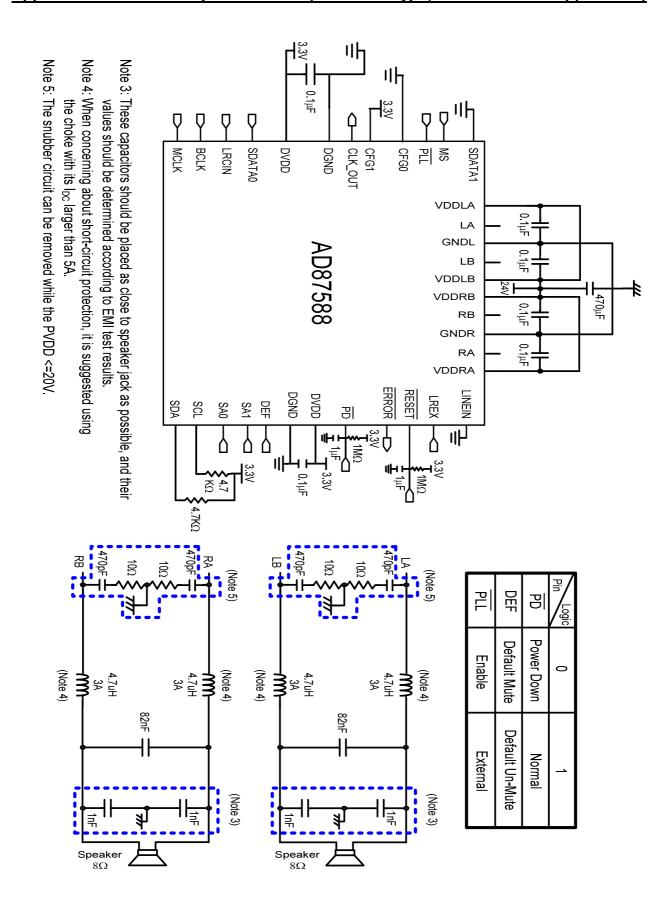
Note 2: Loudspeaker over-current protection is only effective when loudspeaker drivers are properly connected with external LC filters. Please refer to the application circuit example for recommended LC filter configuration.

Capless Line Driver

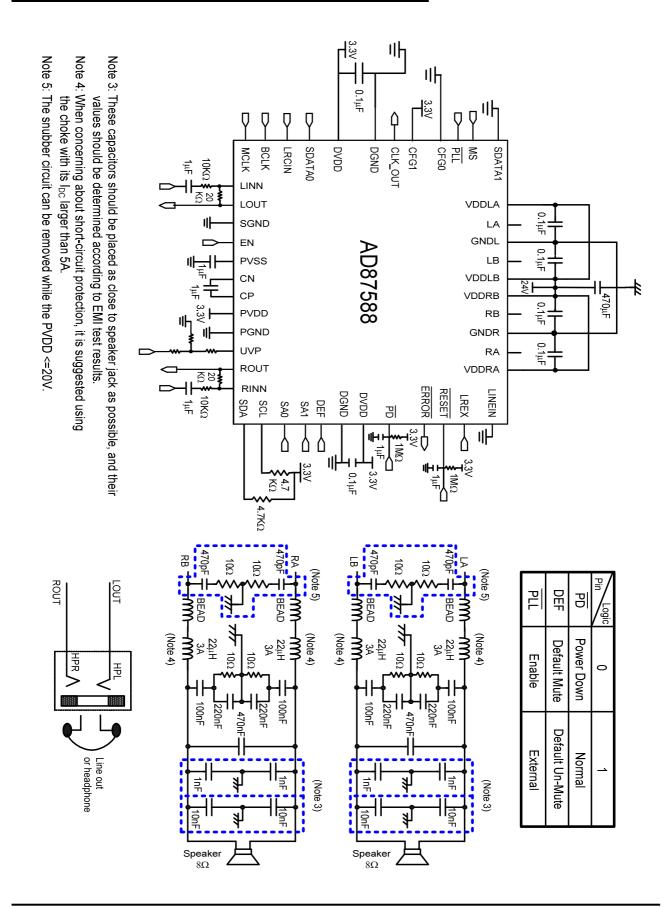

Condition: T_A=25 °C (unless otherwise specified).

SYMBOL	PARAMETER	TEST CONDITIONS	Min	NOM	Max	UNIT
I_{DD}	V _{DD} Supply Current	PVDD=EN=3.3V		7	15	mA
I _{SD}	V _{DD} Shutdown Current	PVDD=3.3V; EN=0V			100	μΑ
II	Input Current	EN pin		0.1		μΑ

Publication Date: Oct. 2017 Revision: 1.5 6/71

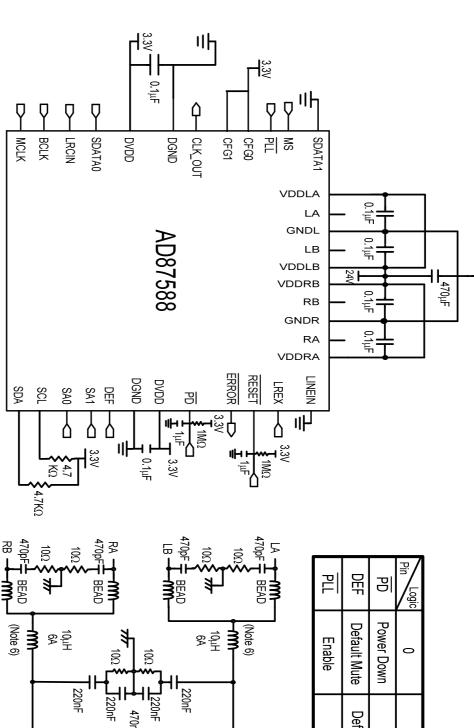

Application Circuit Example for Stereo

Publication Date: Oct. 2017 Revision: 1.5 7/71


Application Circuit Example for Stereo (Economic type, moderate EMI suppression)

Publication Date: Oct. 2017 Revision: 1.5 8/71

Application Circuit Example for Stereo with Line Driver


Publication Date: Oct. 2017 Revision: 1.5 9/71

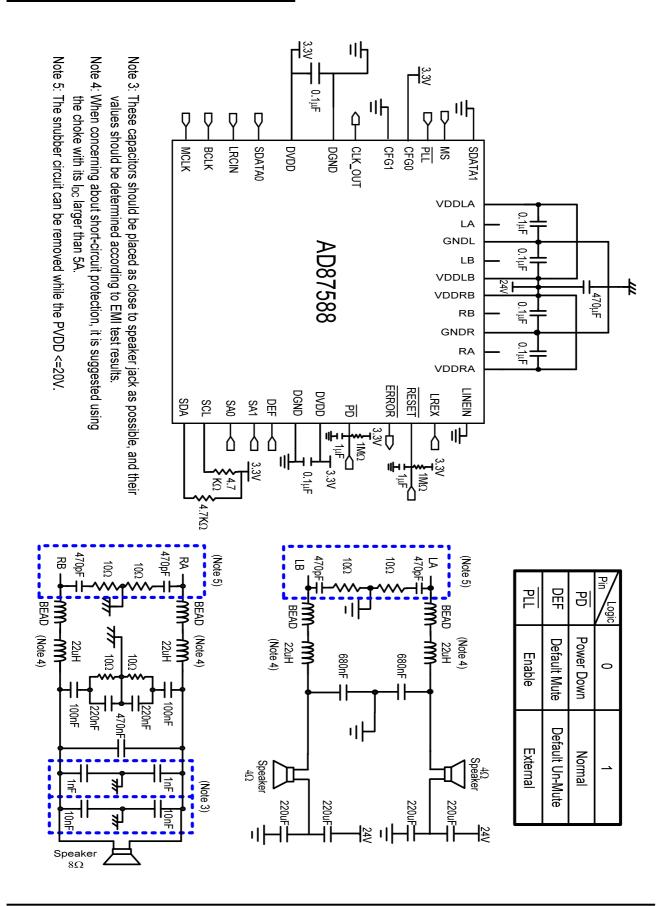
⇟

Application Circuit Example for Mono

Note 7: These capacitors should be placed as close to speaker jack as possible, and their Note 6: When concerning about short-circuit protection or performance, it is suggested using the choke with its l_{DC} larger than 10A. values should be determined according to EMI test results.

	0 Power Down	1 Normal
5	Power Down	Normal
Ŧ	Default Mute	Default Un-Mute
-	Enable	External

Publication Date: Oct. 2017 Revision: 1.5 10/71


Application Circuit Example for Mono (Economic type, moderate EMI suppression)

13% 咐 H33 0.1_µF 丱 Ū O ф Note 7: These capacitors should be placed as close to speaker jack as possible, and their Note 6: When concerning about short-circuit protection or performance, it is suggested using CLK_OUT BCLK LRCIN SDATA0 MCLK DVDD DGND CFG1 CFG0 BL the choke with its I_{DC} larger than 10A values should be determined according to EMI test results. VDDLA LA **GNDL** LB VDDLB ⇟ **1**470μF VDDRB RB 툮 **GNDR** RA VDDRA **ERROR** RESET LINEIN DGND DVDD LREX SDA 딲 SCL 밍 业 3.3V 11µF 33/ 3.37 **~**47 0.1µF 4.7KΩ 믿 肝 BEAD В Power Down Default Mute Enable 0 (Note 6) (Note 6) 4.7uH 6A \$6A H 220nF Default Un-Mute External Normal Speaker

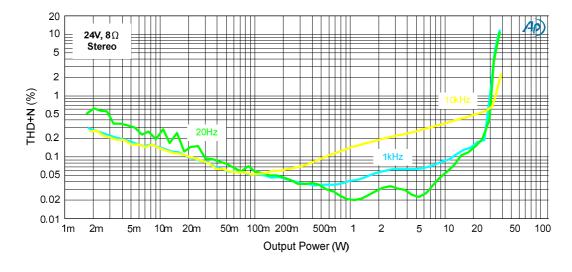
Publication Date: Oct. 2017 Revision: 1.5 11/71

Application Circuit Example for 2.1CH

Publication Date: Oct. 2017 Revision: 1.5 12/71

Electrical Characteristics and Specifications for Loudspeaker

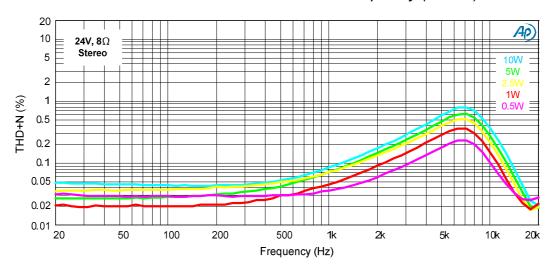
Stereo output (BTL output)

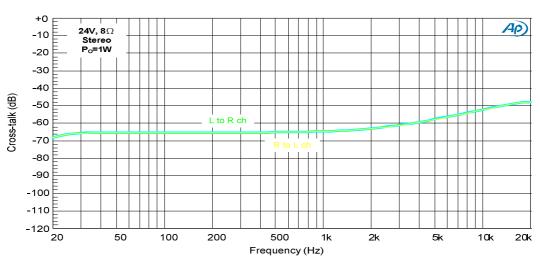

Condition: $T_A=25$ °C, DVDD =3.3V, VDDL=VDDR=24V, $F_S=48$ kHz, Load=8 Ω with passive LC lowpass filter (L=22 μ H with $R_{DC}=0.12\Omega$, C=470nF); Input is 1kHz sinewave.

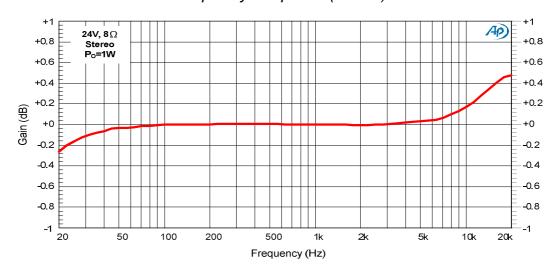
Symbol	Parameter	Condition	Input Level	Min	Тур	Max	Units
D.	RMS Output Power (THD+N=0.17%)				20		W
P _O	RMS Output Power (THD+N=0.13%)	+8dB volume			15		W
(Note 9)	RMS Output Power (THD+N=0.09%)				10		W
THD+N	Total Harmonic Distortion + Noise	P _O =7.5W			0.07		%
SNR	Signal to Noise Ratio (Note 8)	+8dB volume	-9dB		97		dB
DR	Dynamic Range (Note 8)	+8dB volume	-68dB		105		dB
Vn	Output Noise (Note 8)	20Hz to 20kHz			136		uV
PSRR	Power Supply Rejection Ratio	V _{RIPPLE} =1V _{RMS} at 1kHz			-76		dB
	Channel Separation	1W @1kHz			-66		dB

Note 8: Measured with A-weighting filter.

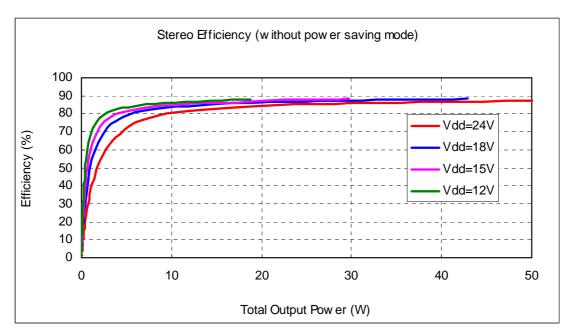
Note 9: Thermal dissipation is limited by package type and PCB design. The external heat-sink or system cooling method should be adopted for maximum power output.

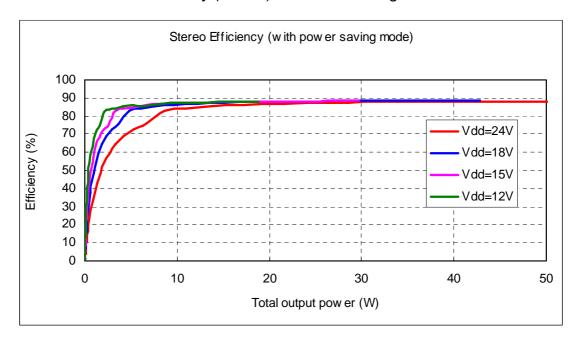

Total Harmonic Distortion + Noise vs. Output Power (Stereo)


Publication Date: Oct. 2017 Revision: 1.5 13/71


Total Harmonic Distortion + Noise vs. Frequency (Stereo)

Cross-talk (Stereo)


Frequency Response (Stereo)

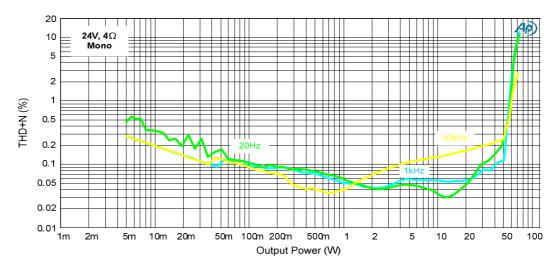

Publication Date: Oct. 2017 Revision: 1.5 14/71

Efficiency (Stereo)

Efficiency (Stereo) for Power Saving Mode

Electrical Characteristics and Specifications for Loudspeaker (cont.)

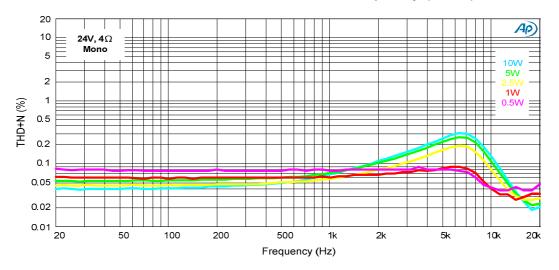
Mono output (PBTL output)

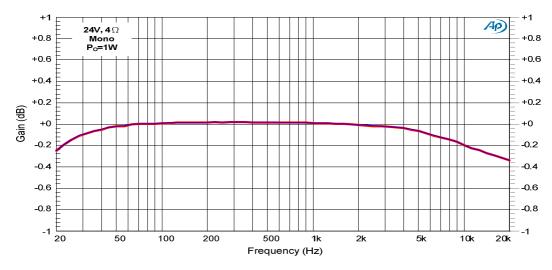

Condition: $T_A=25$ °C, DVDD= 3.3V, VDDL=VDDR=24V, $F_S=48$ kHz, Load= 4Ω with passive LC lowpass filter (L=10 μ H with $R_{DC}=0.12\Omega$, C=470nF); Input is 1kHz sinewave.

Symbol	Parameter	Condition	Input Level	Min	Тур	Max	Units
Po	RMS Output Power (THD+N=0.12%)				40		W
(Note 9)	RMS Output Power (THD+N=0.09%)	+8dB volume			30		W
(Note 9)	RMS Output Power (THD+N=0.06%)				20		W
THD+N	Total Harmonic Distortion + Noise	P _o =15W			0.06		%
SNR	Signal to Noise Ratio (Note 8)	+8dB volume	-9dB		97		dB
DR	Dynamic Range (Note 8)	+8dB volume	-68dB		106		dB
Vn	Output Noise (Note 8)	20Hz to 20kHz			125		uV
PSRR	Power Supply Rejection Ratio	V _{RIPPLE} =1V _{RMS} at 1kHz			-76		dB

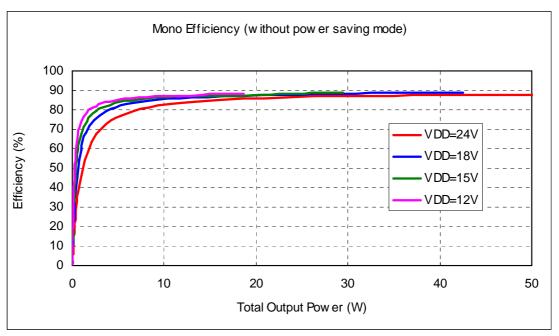
Note 8: Measured with A-weighting filter.

Note 9: Thermal dissipation is limited by package type and PCB design. The external heat-sink or system cooling method should be adopted for maximum power output.

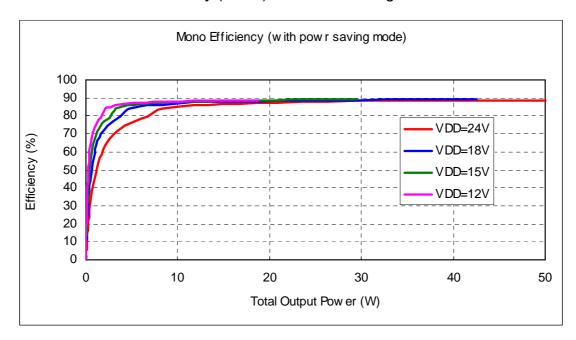

Total Harmonic Distortion + Noise vs. Output Power (Mono)


Publication Date: Oct. 2017 Revision: 1.5 16/71

Total Harmonic Distortion + Noise vs. Frequency (Mono)



Frequency Response (Mono)

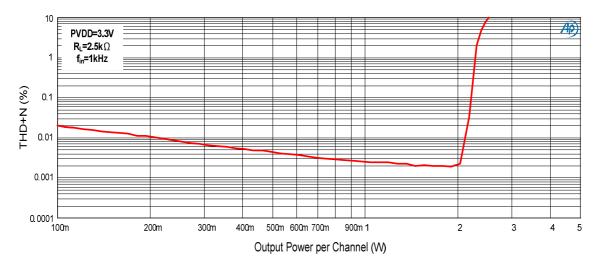


Efficiency (Mono)

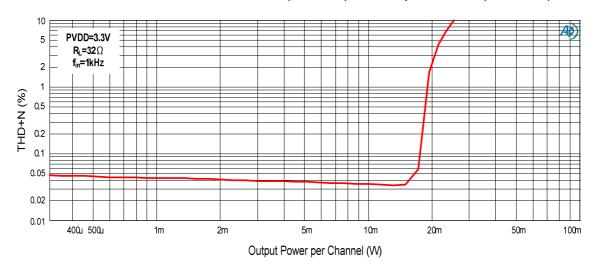
Efficiency (Mono) for Power Saving Mode

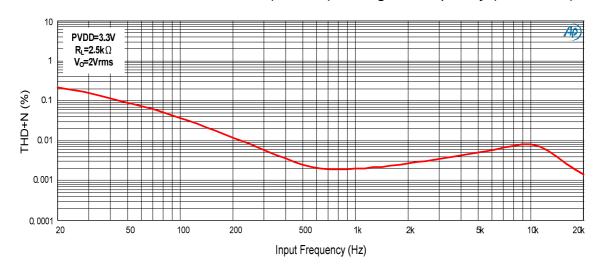
Electrical Characteristics and Specifications for Line Driver

• Capless line driver

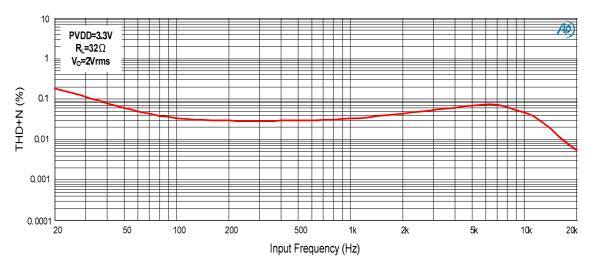

Condition: $T_A=25\,^{\circ}C$, PVDD=3.3V, $T_A=25\,^{\circ}C$, $R_L=2.5k\Omega$, $C_{FLY}=C_{PVSS}=1\mu F$, $C_{IN}=1\mu F$, $R_I=10k\Omega$, $R_F=20k\Omega$ (unless otherwise noted)

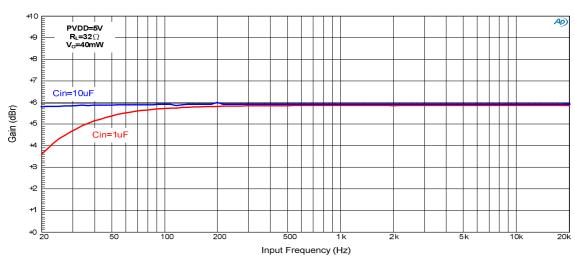
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
M	Output Voltage	THD+N=1%, V _{DD} =3.3V,		2.2		\ /rm 0
Vo	(Outputs In Phase)	f _{IN} =1kHz				Vrms
TUD.N	Total Harmonic	\/ 2\/mag & 4\d\=		0.000		0/
THD+N	Distortion Plus Noise	V _O =2Vrms, f _{IN} =1kHz		0.002		%
Crosstalk	Channel Separation	V _O =2Vrms, f _{IN} =1kHz		-106		dB
V_N	Output Noise	R _I =10k, R _F =10k		11	15	μVrms
V_{SR}	Slew Rate			8		V/µs
SNR	Signal to Noise Ratio	V_O =2Vrms, R_I =10k, R_F =10k, A-weighted		107		dB
G _{BW}	Unit-Gain Bandwidth			8		MHz
A _{VO}	Open-Loop Gain		80			dB
V _{OS}	Output Offset Voltage	V _{DD} =3V to 5.5V, Input Grounded	-5		5	mV
PSRR	Power Supply Rejection	V_{DD} =3V to 5.5V, V_{rr} =200mVrms,		-80	-60	dB
PSKK	Ratio	f _{IN} =1kHz				
Rı	Input Resistor Range		1	10	47	kΩ
В	Feedback Resistor		4.7	20	100	kΩ
R _F	Range		4.7	20	100	K12
f	Charge-Pump		400	500	600	kHz
f _{CP}	Frequency		400	300	000	KI IZ
	Maximum capacitive			220		pF
	Load			220		ρı
V_{UVP}	External Under Voltage			1.25		V
V UVP	Detection			1.20		V
	External Under Voltage					
I _{HYS}	Detection Hysteresis			5		μΑ
	Current					
T _{start-up}	Start-up Time			2		ms

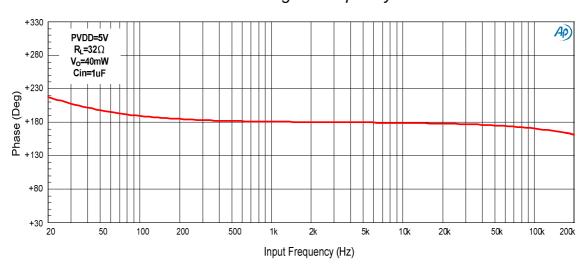

Publication Date: Oct. 2017 Revision: 1.5 19/71


Total Harmonic Distortion + Noise (THD+N) vs. Output Power (R_L =2.5 $k\Omega$)

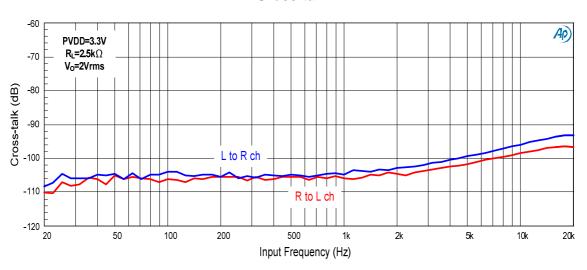
Total Harmonic Distortion + Noise (THD+N) vs. Output Power (R_L =32 Ω)

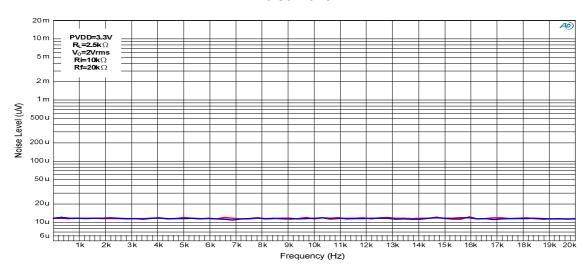

Total Harmonic Distortion + Noise (THD+N) vs. Signal Frequency (R_L =2.5 $k\Omega$)


Publication Date: Oct. 2017 Revision: 1.5 20/71


Total Harmonic Distortion + Noise (THD+N) vs. Signal Frequency (R_L =32 Ω)

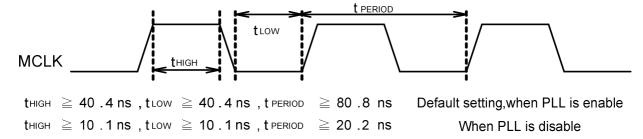
Gain vs. Signal Frequency


Phase vs. Signal Frequency

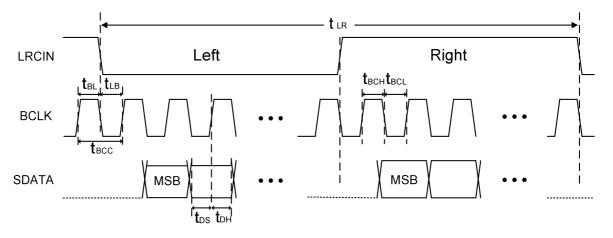

Publication Date: Oct. 2017 Revision: 1.5 21/71

Cross-talk

Noise Level



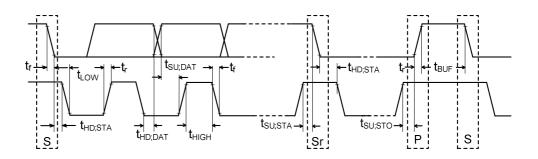
Interface configuration


 I²S **LRCIN** Left Right **BCLK** LSB **SDATA** Left-Alignment **LRCIN** Right Left **BCLK** LSB **SDATA** MSB Right-Alignment **LRCIN** Left Right **BCLK**

System Clock Timing

Timing Relationship (Using I²S format as an example)

SDATA



Revision: 1.5 23/71

Symbol	Parameter	Min	Тур	Max	Units
t _{LR}	LRCIN Period (1/F _S)	10.41		31.25	μs
t _{BL}	BCLK Rising Edge to LRCIN Edge	50			ns
t _{LB}	LRCIN Edge to BCLK Rising Edge	50			ns
t _{BCC}	BCLK Period (1/64F _S)	162.76		488.3	ns
t _{BCH}	BCLK Pulse Width High	81.38		244	ns
t _{BCL}	BCLK Pulse Width Low	81.38		244	ns
t _{DS}	SDATA Set-Up Time	50			ns
t _{DH}	SDATA Hold Time	50			ns

I²C Timing

Darrandar	Symbol	Standard Mode		Fast Mode		11.20
Parameter	Symbol	MIN.	MAX.	MIN.	MAX.	Unit
SCL clock frequency	f _{SCL}	0	100	0	400	kHz
Hold time for repeated START condition	t _{HD,STA}	4.0		0.6		μs
LOW period of the SCL clock	t _{LOW}	4.7		1.3		μs
HIGH period of the SCL clock	t _{HIGH}	4.0		0.6		μs
Setup time for repeated START condition	t _{SU;STA}	4.7		0.6		μs
Hold time for I ² C bus data	t _{HD;DAT}	0	3.45	0	0.9	μs
Setup time for I ² C bus data	t _{SU;DAT}	250		100		Ns
Rise time of both SDA and SCL signals	t _r		1000	20+0.1Cb	300	Ns
Fall time of both SDA and SCL signals	t _f		300	20+0.1Cb	300	Ns
Setup time for STOP condition	t _{SU;STO}	4.0		0.6		μs
Bus free time between STOP and the next	4	4.7		4.0		
START condition	t _{BUF}	4.7		1.3		μs
Capacitive load for each bus line	C _b		400		400	pF
Noise margin at the LOW level for each	V .	0.1V _{DD}		0.1V _{DD}		V
connected device (including hysteresis)	V_{nL}	U.IV _{DD}		U.IV _{DD}		V
Noise margin at the HIGH level for each	V	0.2V _{DD}		0.2V _{DD}		V
connected device (including hysteresis)	V_{nH}	U.ZV _{DD}		U.ZV _{DD}		V

Operation Description

Operation modes

(i) Without I²C control

The default settings, Bass, Treble, EQ, Volume, DRC, PLL, Subwoofer Bandwidth, ..., and Sub-woofer gain are applied to register table content when using AD87588 without I²C control. The more information about default settings, please refer to the highlighted column of register table section.

(ii) With I²C control

When using I²C control, user can program suitable parameters into AD87588 for their specific applications. Please refer to the register table section to get the more detail.

Internal PLL (PLL)

AD87588 has a built-in PLL internally. When the external MCLK clock is high quality enough, you can bypass the PLL function by pulling the PLL pin is high. Otherwise, the internal PLL with an external reference MCLK is highly recommended.

Default volume (DEF)

The default volume of AD87588 is +1.625dB while DEF pin setting at high, the default volume can be muted by selecting DEF pin low. When using AD87588 without I²C control interface, users should pull this pin high. The default value of register table setting will be changed for different applications. About the more detailed information, please refer to the register table section.

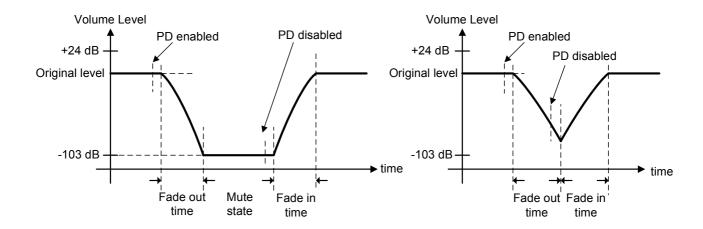
LINEIN

When set LINEIN pin low, AD87588 will select I²S data from SDATA0. On the contrary, AD87588 will select I²S data from SDATA1when set LINEIN pin high. Before changing LINEIN pin status, users need to send I²C signal to mute AD87588 to avoid pop sound.

MS

During system initialization, the content of this EEPROM can be loaded automatically into AD87588 registers and RAM when MS pin of AD87588 is set high. In other words, during initialization, for a short period of time, AD87588 will behave like an IC master to fetch data from EEPROM content into registers and RAM automatically. After this is finished, AD87588 will become an I²C slave, waiting the master to send commands. When MS pin is set low, AD87588 will always behave like an I²C slave. Note that the size of the EEPROM shall be larger than 4Kb, such as Microchips' 24LC04B, because in total, there are 371 bytes of data. The first 256 bytes of data is stored from address 101000, and the last 115 bytes of data is stored from address 101001.

Publication Date: Oct. 2017 Revision: 1.5 25/71



Reset

When the RESET pin is lowered, AD87588 will clear the stored data and reset the register table to default values. AD87588 will exit reset state at the 256th MCLK cycle after the \overline{RESET} pin is raised to high.

Power down control

AD87588 has a built-in volume fade-in/fade-out design for PD/Mute function. The relative PD timing diagrams for loudspeakers are shown below.

The volume level will be decreased to $-\infty dB$ in several LRCIN cycles. Once the fade-out procedure is finished, AD87588 will turn off the power stages, stop clock signals (MCLK, BCLK) from feeding into digital circuit and turn off the current of the internal analog circuits. After PD pin is pulled low, AD87588 needs up to 256 LRCIN clocks to finish the above works before entering power down state. Users can't program AD87588 during power down state, but all the settings of register table will still be kept except that DVDD is removed.

If the PD function is disabled in the midway of the fade-out procedure, AD87588 will also execute the fade-in procedure. In addition, AD87588 will establish the analog circuits' bias current and feed the clock signals (MCLK, BCLK) into digital circuits. Then, AD87588 will return to its normal operation without power down.

Publication Date: Oct. 2017 Revision: 1.5 26/71

Self-protection circuits

AD87588 has built-in protection circuits including thermal, short-circuit and under-voltage detection circuits.

(i) When the internal junction temperature is higher than 150℃, power stages will be turned off and AD87588 will return to normal operation once the temperature drops to 120℃. The temperature values may vary around 10%.

(ii) The short-circuit protection circuit protects the output stage when the wires connected to loudspeakers are shorted to each other or GND/VDD. For normal 24V operations, the current flowing through the power stage will be less than 5A for stereo configuration or less than 10A for mono configuration. Otherwise, the short-circuit detectors may pull the \overline{ERROR} pin to DGND, disabling the output stages. When the over-temperature or short-circuit condition occurs, the open-drain \overline{ERROR} pin will be pulled low and latched into ERROR state.

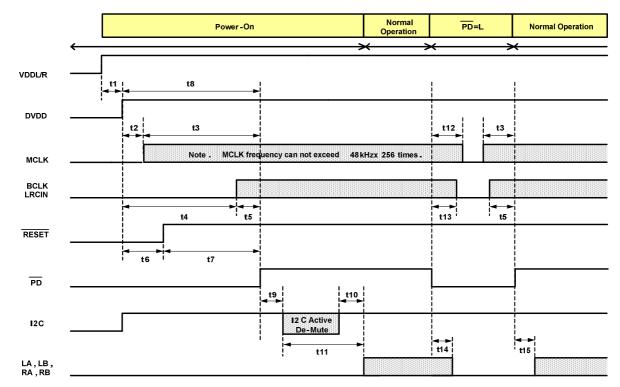
Once the over-temperature or short-circuit condition is removed, AD87588 will exit ERROR state when one of the following conditions is met: (1) \overline{RESET} pin is pulled low, (2) \overline{PD} pin is pulled low, (3) Master mute is enabled through the I^2C interface.

(iii) Once the DVDD voltage is lower than 2.7V, AD87588 will turn off its loudspeaker power stages and cease the operation of digital processing circuits. When DVDD becomes larger than 2.8V, AD87588 will return to normal operation.

Anti-pop design

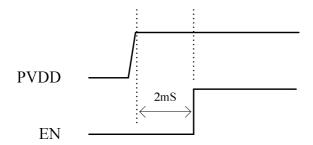
AD87588 will generate appropriate control signals to suppress pop sounds during initial power on/off, power down/up, mute, and volume level changes.

3D surround sound

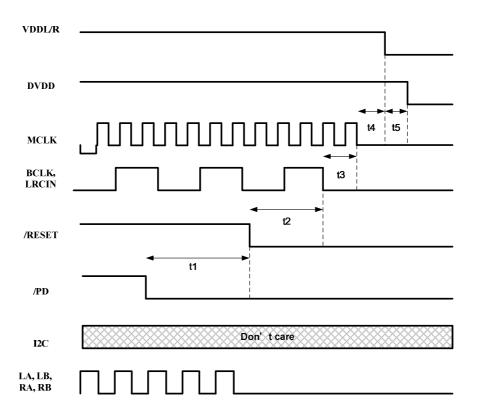

AD87588 provides the virtual surround sound technology with greater separation and depth voice quality for stereo signals.

Publication Date: Oct. 2017 Revision: 1.5 27/71

Power on sequence


Hereunder is AD87588's power on sequence for Class-D amplifier. Please note that we suggested users set DEF pin at low state initially, and then give a de-mute command via I²C when the whole system is stable.

Symbol	Condition	Min	Max	Units
t1		0	-	msec
t2		0	-	msec
t3		10	-	msec
t4		0	-	msec
t5		10	-	msec
t6		10	-	msec
t7		0	-	msec
t8		200	-	msec
t9		20	-	msec
t10	DEF=L	-	0.1	msec
t11	DEF=H	-	0.1	msec
t12		25	-	msec
t13		25	-	msec
t14		-	22	msec
t15	DEF= L or H	-	0.1	Msec


Hereunder is AD87588's Line Driver power on sequence. Please put 2mS timing delay to enable the Line Driver after PVDD power up ready.

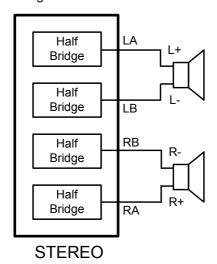
Power on sequence for Line Driver

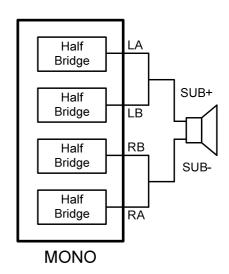
• Power off sequence

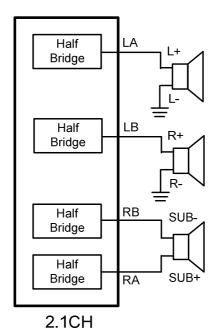
Hereunder is AD875888's power off sequence for Class-D amplifier.

Symbol	Condition	Min	Max	Units
t1		35	ı	msec
t2		0.1	ı	msec
t3		0	-	msec
t4		1	-	msec
t5		1	-	msec

Publication Date: Oct. 2017 Revision: 1.5 29/71

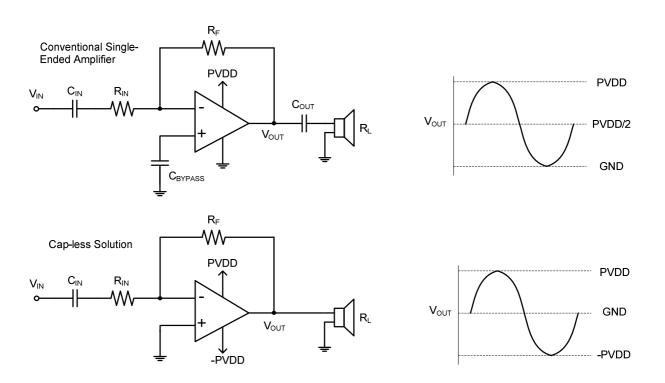



Output configuration


AD87588 can be configured to Stereo, Mono or 2.1CH mode by the pin of CFG0 and CFG1 to enable it.

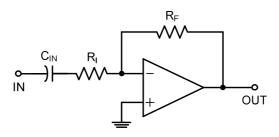
CFG1	CFG0	Configuration Mode
0	0	Reserved
0	1	2.1CH
1	0	Stereo
1	1	Mono

Configuration figures:


Publication Date: Oct. 2017 Revision: 1.5 30/71

• Line Driver Amplifiers Operation

A conventional inverting line-driver amplifier always requires an output dc-blocking capacitor and a bypass capacitor. DC blocking capacitors are large in size and cost a lot. It also restricts the output low frequency response. POP will occur if the charge and discharge processes on output capacitors are not carefully take cared. Besides, it needs to wait for a long time to charge V_{OUT} from 0V to PVDD/2.


For a cap-less line driver, a negative supply voltage (-PVDD) is produced by the integrated charge-pump, and feeds to line driver's negative supply instead of ground. The positive input can directly connect to ground without a C_{BYPASS} , and V_{OUT} is biased at ground which can eliminate the output dc-blocking capacitors. The output voltage swing is doubled compared to conventional amplifiers.

Gain Setting Resistors (R_I and R_F) in Line Driver

The line driver's gain is determined by R_I and R_F . The configuration of the amplifier is inverting type, The gain equation is listed as follows:

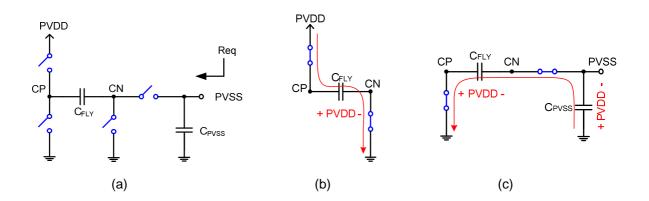
Inverting configuration: $A_V = -\frac{R_F}{R_I}$

Elite Semiconductor Memory Technology Inc.

Publication Date: Oct. 2017 Revision: 1.5 31/71

The values of R_I and R_F must be chosen with consideration of stability, frequency response and noise. The recommended value of R_I is in the range from $1k\Omega$ to $47k\Omega$, and R_F is from $4.7k\Omega$ to $100k\Omega$ for. The gain is in the range from -1V/V to -10V/V for inverting configuration. The following table show the recommended resistor values for different configurations.

$R_{I}(k\Omega)$	$R_F(k\Omega)$	Inverting Input Gain (V/V)
22	22	-1
15	30	-2
33	68	-2.1
10	100	-10


Input Blocking Capacitors (C_{IN}) for Line Driver

An input blocking capacitor is required to block the dc voltage of the audio source and allows the input to bias at a proper dc level for optimum operation. The input capacitor and input resistor (R_I) form a high-pass filter with the corner frequency determined as following equation:

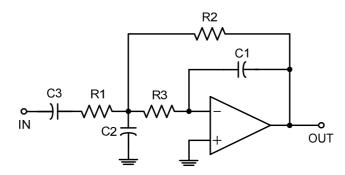
$$f_C = \frac{1}{2\pi R_I C_{IN}}$$

Charge-Pump Operation for Line Driver

The charge-pump is used to generate a negative supply voltage to supply to line-driver. It needs two external capacitors, C_{FLY} and C_{PVSS} , for normal operation, see figure (a). The operation can be analyzed with two phase. In phase I, see figure (b), C_{FLY} is charged to PVDD, and in phase II, see figure (c), the charges on C_{FLY} are shared with C_{PVSS} , that makes PVSS a negative voltage. After an adequate clock cycles, PVSS will be equaled to -PVDD. Low ESR capacitors are recommended, and the typical value of C_{FLY} and C_{PVSS} is $1\mu F$. A smaller capacitance can be used, but the maximum output voltage may be reduced.

Publication Date: Oct. 2017 Revision: 1.5 32/71

Decoupling Capacitors in Line Driver


A low ESR power supply decoupling capacitor for PVDD is required for better performance. The capacitor should place as close to chip as possible, the value is typically 1µF. For filtering low frequency noise signals, a 10µF or greater capacitor placed near the chip is recommended.

Second-Order Filter Configuration for Line Driver

Line Driver can be used like a standard OPAMP. Several filter topologies can be implemented by using line driver, both single-ended and differential input configuration. For inverting input configuration, the overall gain

is
$$-\frac{R2}{R1}$$
, the high-pass filter's cutoff frequency is $\frac{1}{2\pi R1C3}$, the low-pass filter's cutoff frequency is

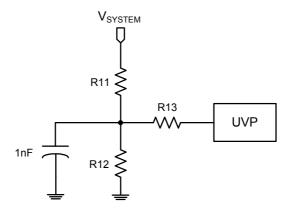
 $\frac{1}{2\pi\sqrt{R2R3C1C2}}$, The following table show the detail component values.

Gain	High	Low						
(V/V)	Pass	Pass	C1 (pF)	C2 (pF)	C3 (µF)	R1 (kΩ)	R2 (kΩ)	R3 (kΩ)
((Hz)	(kHz)						
-1	1.6	40	100	680	10	10	10	24
-1.5	1.3	40	68	680	15	8.2	12	30
-2	1.6	60	33	150	6.8	15	30	47
-2	1.6	30	47	470	6.8	15	30	43
-3.33	1.2	30	33	470	10	13	43	43
-10	1.5	30	22	1000	22	4.7	47	27

Publication Date: Oct. 2017 Revision: 1.5 33/71

External Under-Voltage Protection for Line Driver

The external under-voltage protection is used to mute the line-driver before any input voltage change to generate a POP. The threshold of UVP pin is designed to 1.25V. By using a resistor divider, users can decide the UVP level and hysteresis level. The levels can be obtained by following equations:


$$V_{UVP} = (1.25V - 6\mu A \times R13) \times (R11 + R12) / R12$$

Hysteresis = $5\mu A \times R13 \times (R11 + R12) / R12$

With the condition R13 \gg (R11 // R12).

For example, to obtain V_{UVP} =2.67V, Hysteresis=0.37V, R11=1.5k Ω , R12=1k Ω , R13=30k Ω .

The UVP pin voltage ripple needs to take care during power up state within 2mS. The UVP pin ripple lower 1.25V by 2~4 times will trigger test mode in Line Driver. To put a capacitor parallel with UVP pin can improve test mode mis-operating triggered while V_{STSTEM} is not stable during power up initially. That's recommended 2mS timing delay to enable the Line Driver after PVDD power up ready.

UVP pin is pulled high internally, and therefore it can be floated to disable the external under-voltage protection feature.

Publication Date: Oct. 2017 Revision: 1.5 34/71

I²C-Bus Transfer Protocol

Introduction

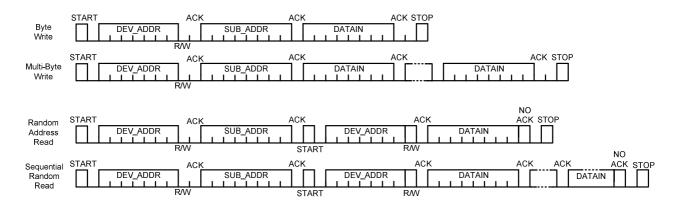
AD87588 employs I²C-bus transfer protocol. Two wires, serial data and serial clock carry information between the devices connected to the bus. Each device is recognized by a unique 7-bit address and can operate as either a transmitter or a receiver. The master device initiates a data transfer and provides the serial clock on the bus. AD87588 is always an I²C slave device.

Protocol

START and STOP condition

START is identified by a high to low transition of the SDA signal.. A START condition must precede any command for data transfer. A STOP is identified by a low to high transition of the SDA signal. A STOP condition terminates communication between AD87588 and the master device on the bus. In both START and STOP, the SCL is stable in the high state.

Data validity


The SDA signal must be stable during the high period of the clock. The high or low change of SDA only occurs when SCL signal is low. AD87588 samples the SDA signal at the rising edge of SCL signal.

Device addressing

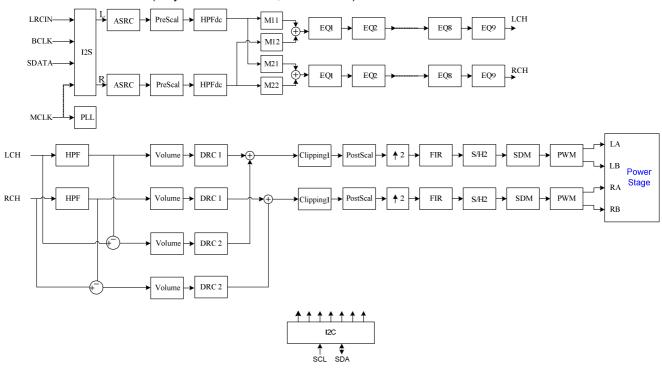
The master generates 7-bit address to recognize slave devices. When AD87588 receives 7-bit address matched with 0110x0y (where x and y can be selected by external SA0 and SA1 pins, respectively), AD87588 will acknowledge at the 9th bit (the 8th bit is for R/W bit). The bytes following the device identification address are for AD87588 internal sub-addresses.

Data transferring

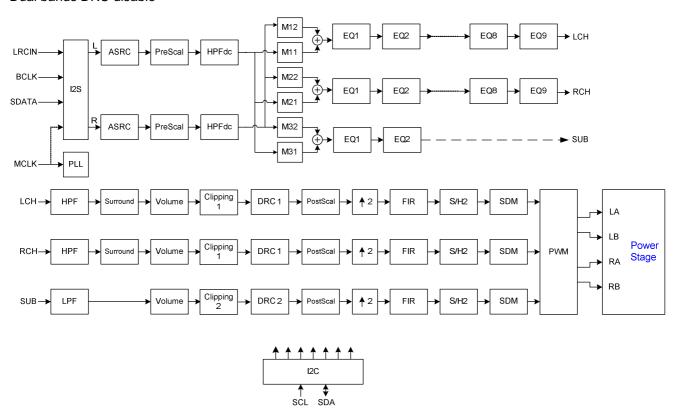
Each byte of SDA signaling must consist of 8 consecutive bits, and the byte is followed by an acknowledge bit. Data is transferred with MSB first, as shown in the figure below. In both write and read operations, AD87588 supports both single-byte and multi-byte transfers. Refer to the figure below for detailed data-transferring protocol.

Publication Date: Oct. 2017

35/71


Revision: 1.5

Register Table


The AD87588's audio signal processing data flow is shown below. Users can control these functions by programming appropriate settings in the register table. In this section, the register table is summarized first. The definition of each register follows in the next section.

Dual bands DRC enable (only for stereo mode, CFG0=Low)

Dual bands DRC disable

Address	Name	B[7]	B[6]	B[5]	B[4]	B[3]	B[2]	B[1]	B[0]
0X00	SCTL1	IF[2]	IF[1]	IF[0]	Reserved	PWML_X	PWMR_X	LV_UVSEL	LREXC
0X01	SCTL2	Rese	rved	FS[1]	FS[0]	PMF[3]	PMF[2]	PMF[1]	PMF[0]
0X02	SCTL3	EN_CLKO		Reserved		MUTE	CM1	CM2	СМЗ
0X03	MVOL	MV[7]	MV[6]	MV[5]	MV[4]	MV[3]	MV[2]	MV[1]	MV[0]
0X04	C1VOL	C1V[7]	C1V[6]	C1V[5]	C1V[4]	C1V[3]	C1V[2]	C1V[1]	C1V[0]
0X05	C2VOL	C2V[7]	C2V[6]	C2V[5]	C2V[4]	C2V[3]	C2V[2]	C2V[1]	C2V[0]
0X06	C3VOL	C3V[7]	C3V[6]	C3V[5]	C3V[4]	C3V[3]	C3V[2]	C3V[1]	C3V[0]
0X07	BTONE	Reserved			BTC[4]	BTC[3]	BTC[2]	BTC[1]	BTC[0]
0X08	TTONE		Reserved		TTC[4]	TTC[3]	TTC[2]	TTC[1]	TTC[0]
0X09	XOF		Res	erved		XO[3]	XO[2]	XO[1]	XO[0]
0X0A	SCTL4	SRBP	BTE	TBDRCE	NGE	EQL	PSL	DSPB	НРВ
0X0B	C1CFG		Reserved		C1DRCM	C1PCBP	C1DRCBP	C1HPFBP	C1VBP
0X0C	C2CFG		Reserved		C2DRCM	C2PCBP	C2DRCBP	C2HPFBP	C2VBP
0X0D	C3CFG		Reserved		C3DRCM	СЗРСВР	C3DRCBP	СЗНРГВР	C3VBP
0X0E	LAR	LA[3] LA[2] LA[1]		LA[1]	LA[0]	LR[3]	LR[2]	LR[1]	LR[0]
0X0F		Reserved							
0X10	ERDLY				Rese	erved			

Publication Date: Oct. 2017 Revision: 1.5 37/71

0X11	SCTL5	LOM	LOS	SW_RSTB	Rese	erved	DIS_MCLK_DET	QT_EN	PWM_SEL
0X12	HVUV	DIS_HVUV		Reserved	•	HV_UVSEL [3]	HV_UVSEL [2]	HV_UVSEL [1]	HV_UVSEL [0]
0X13	NGCFG		Reserved		DIS_NG_FADE	Rese	erved	NG_GAIN[1]	NG_GAIN[0]
0X14	CFADDR	Reserved	CFA[6]	CFA[5]	CFA[4]	CFA[3]	CFA[2]	CFA[1]	CFA[0]
0X15	A1CF1	C1B[23]	C1B[22]	C1B[21]	C1B[20]	C1B[19]	C1B[18]	C1B[17]	C1B[16]
0X16	A1CF2	C1B[15]	C1B[14]	C1B[13]	C1B[12]	C1B[11]	C1B[10]	C1B[9]	C1B[8]
0X17	A1CF3	C1B[7]	C1B[6]	C1B[5]	C1B[4]	C1B[3]	C1B[2]	C1B[1]	C1B[0]
0X18	A2CF1	C2B[23]	C2B[22]	C2B[21]	C2B[20]	C2B[19]	C2B[18]	C2B[17]	C2B[16]
0X19	A2CF2	C2B[15]	C2B[14]	C2B[13]	C2B[12]	C2B[11]	C2B[10]	C2B[9]	C2B[8]
0X1A	A2CF3	C2B[7]	C2B[6]	C2B[5]	C2B[4]	C2B[3]	C2B[2]	C2B[1]	C2B[0]
0X1B	B1CF1	C3B[23]	C3B[22]	C3B[21]	C3B[20]	C3B[19]	C3B[18]	C3B[17]	C3B[16]
0X1C	B1CF2	C3B[15]	C3B[14]	C3B[13]	C3B[12]	C3B[11]	C3B[10]	C3B[9]	C3B[8]
0X1D	B1CF3	C3B[7]	C3B[6]	C3B[5]	C3B[4]	C3B[3]	C3B[2]	C3B[1]	C3B[0]
0X1E	B2CF1	C4B[23]	C4B[22]	C4B[21]	C4B[20]	C4B[19]	C4B[18]	C4B[17]	C4B[16]
0X1F	B2CF2	C4B[15]	C4B[14]	C4B[13]	C4B[12]	C4B[11]	C4B[10]	C4B[9]	C4B[8]
0X20	B2CF3	C4B[7]	C4B[6]	C4B[5]	C4B[4]	C4B[3]	C4B[2]	C4B[1]	C4B[0]
0X21	A0CF1	C5B[23]	C5B[22]	C5B[21]	C5B[20]	C5B[19]	C5B[18]	C5B[17]	C5B[16]
0X22	A0CF2	C5B[15]	C5B[14]	C5B[13]	C5B[12]	C5B[11]	C5B[10]	C5B[9]	C5B[8]
0X23	A0CF3	C5B[7]	C5B[6]	C5B[5]	C5B[4]	C5B[3]	C5B[2]	C5B[1]	C5B[0]
0X24	CFRW		Res	erved		RA	R1	WA	W1
0X25	FDCFG				Rese	erved			
0X26	MBIST				Rese	erved			
0X27	Status				Rese	erved			
0X28	PWM_CTR				Pasa	erved			
0/20	L				Nese	siveu			
0X29	TM_CTRL				Rese	erved			
0X2A	QT_SW_LEV		Reserved		QT_SW_LEVEL	QT_SW_LEVEL	QT_SW_LEVEL	QT_SW_LEVEL	QT_SW_LEVEL
UNZA	EL		Keservea			[3]	[2]	[1]	[0]
0X2B	VFT	MV_FT[1]	MV_FT[0]	C1V_FT[1]	C1V_FT[0]	C2V_FT[1]	C2V_FT[0]	C3V_FT[1]	C3V_FT[0]
0X2C	ОС	OCBIT[1]	OCBIT[0]	SCM[1]	SCM[0]		Rese	erved	

Detail Description for Register

Note that the highlighted columns are default values of these tables. If there is no highlighted value, the default setting of this bit is determined by the external pin.

Address 0X00 : State control 1

AD87588 supports multiple serial data input formats including I²S, Left-alignment and Right-alignment. These formats are selected by users via bit7~bit5 of address 0X00. The left/right channels can be exchanged to each other by programming to address 0X00/bit0, LREXC.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			000	I ² S 16-24 bits
			001	Left-alignment 16-24 bits
D[7:E]	IE(3:01	Input Format	010	Right-alignment 16 bits
B[7:5]	IF[2:0]	Input Format	011	Right-alignment 18 bits
			100	Right-alignment 20 bits
			101	Right-alignment 24 bits
B[4]		Reserved		
DIOI	PWML X	LA/LB exchange	0	No exchange
B[3]	PVVIVIL_A		1	Exchange
DIOI	PWMR_X	DA/DD ovebenge	0	No exchange
B[2]	PVVIVIK_A	RA/RB exchange	1	Exchange
D[4]	LV_UVSEL	LV under voltage	0	2.7v
B[1] LV_UVS	LV_UVSEL	selection	1	3.0v
BIOI	LREXC	Left/Right (L/R)	0	No exchanged
B[0]	LNEXC	Channel exchanged	1	L/R exchanged

Address 0X01 : State control 2

AD87588 has a built-in PLL which can be bypassed by pulling the PLL pin High. When PLL is bypassed, AD87588 only supports 1024x, 512x and 256x MCLK/Fs ratio for Fs is 32/44.1/48kHz, 64/88.2/96kHz, and 128/176.4/192kHz respectively. When PLL is enabled, multiple MCLK/Fs ratios are supported. Detail setting is shown in the following table.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:6]		Reserved		
			00	32/44.1/48kHz
B[5:4]	4] FS[1:0] Sampling Frequency	01	64/88.2/96kHz	
			1x	128/176.4/192kHz

Publication Date: Oct. 2017 Revision: 1.5 39/71

Multiple MCLK/FS ratio setting table

BIT	NAME	DESCRIPTION	VALUE	B[5:4]=00	B[5:4]=01	B[5:4]=1x				
			0000	1024x	512x	256x				
			0001	64x	64x	64x				
			0010	128x	128x	128x				
		MCLK/Fa	0011	192x	192x	192x				
		MCLK/Fs setup when MF[3:0] PLL is not bypassed	setup when	0100	Reset Default	Reset Default	Reset Default			
B[3:0]	PMF[3:0]			0100	(256x)	(256x)	(256x)			
			0101	384x	384x					
			0110	512x	512x					
								0111	576x	
			1000	768x	Reserved					
			1001	1024x						

Address 0X02 : State control 3

AD87588 has mute function including master mute and channel mute. When master mute is enabled, all 3 processing channels are muted. User can mute these 3 channels individually by channel mute. When the mute function is enabled or disabled, the fade-out or fade-in process will be initiated.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION	
DIZI	_, EN_CLK_	DLL Clock Output	0	Disabled	
B[7]	OUT	PLL Clock Output	1	Enabled	
B[6]		Reserved			
B[5]		Reserved			
B[4]		Reserved			
DIOI	MUTE	MUTE Master Mute	0	All channel not muted	
B[3]	IVIOTE		1	All channel muted	
DIOI	CM1	01	0	Ch1 not muted	
B[2]	CIVIT	Channel 1 Mute	1	Only Ch1 muted	
D[4]	CM2	Channel 2 Mute	0	Ch2 not muted	
B[1]	CIVIZ	Channel 2 Mute	1	Only Ch2 muted	
DIO1	CM2	Channel 2 Muta	0	Ch3 not muted	
B[0]	CM3	СМЗ	CM3 Channel 3 Mute	1	Only Ch3 muted

Publication Date: Oct. 2017 Revision: 1.5 40/71

Address 0X03 : Master volume control

AD87588 supports both master-volume (Address 0X03) and channel-volume control (Address 0x04, 0x05 and 0X06) modes. Both volume control settings range from $+12dB \sim -103dB$ and 0.5dB per step. Note that the master volume control is added to the individual channel volume control as the total volume control. For example, if the master volume level is set at, Level A (in dB unit) and the channel volume level is set at Level B (in dB unit), the total volume control setting is equal to Level A plus with Level B.

-103dB \leq Total volume (Level A + Level B) \leq +24dB.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			0000001	+11.5dB
			00000010	+11.0dB
			:	:
			00010111	+0.5dB
BIT[7:0]	N/I\/[7:0]	Master Volume	00011000	0.0dB
БП[7.0]	MV[7:0]	Master volume	00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

Address 0X04 : Channel 1 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			0000001	+11.5dB
			:	:
			00010100	+2dB
		Channel1 Volume	:	:
BIT[7:0]	C1V[7:0]		00011000	0.0dB
ы [7.0]			00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

Publication Date: Oct. 2017 Revision: 1.5 41/71

• Address 0X05 : Channel 2 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			0000001	+11.5dB
			:	:
			00010100	+2dB
		Channel2 Volume	:	:
DITIZIO	C0\/[7:0]		00011000	0.0dB
BIT[7:0]	C2V[7:0]		00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

• Address 0X06 : Channel 3 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			0000001	+11.5dB
			:	:
			00010100	+2dB
	C3V[7:0]	/[7:0] Channel3 Volume	:	:
BIT[7:0]			00011000	0.0dB
БП[7.0]			00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

Publication Date: Oct. 2017 Revision: 1.5 42/71

Address 0X07/0X08 : Bass/Treble tone boost and cut

Last two sets of EQ can be programmed as bass/treble tone boost and cut. When, register with address-0X0A, bit-6, BTE is set to high, the EQ-8 and EQ-9 will perform as bass and treble respectively. The -3dB corner frequency of bass is 360Hz, and treble is 7kHz. The gain range for both filters is +12db ~ -12 dB with 1dB per step.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:5]		Reserved		
			00000	+12dB
			00100	+12dB
			00101	+11dB
			00110	+10dB
			01110	+2dB
	BTC[4:0]	The gain setting	01111	+1dB
B[4:0]	/	of	10000	0dB
	TTC[4:0]	boost and cut	10001	-1dB
			10010	-2dB
			11010	-10dB
			11011	-11dB
			11100	-12dB
			11111	-12dB

Publication Date: Oct. 2017 Revision: 1.5 43/71

• Address 0X09 : Bass management crossover frequency

The AD87588 provides bass management crossover frequency selection. A 1st order high-pass filter (channel 1 and 2) and a 2nd order low-pass filter (channel 3) at selected frequency are performed.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:4]		Reserved		
			0000	80Hz
			0001	100Hz
			0010	120Hz
			0011	140Hz
			0100	160Hz
			0101	180Hz
			0110	200Hz
D[3:0]	VO[3·0]	Bass management	0111	300Hz
B[3:0]	XO[3:0]	crossover frequency	1000	400Hz
			1001	500Hz
			1010	600Hz
			1011	700Hz
			1100	800Hz
			1101	900Hz
			1110	1000Hz
			1111	

Publication Date: Oct. 2017 Revision: 1.5 44/71

Address 0X0A: State control 4

The AD82586B provides several DSP setting as following.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
DIZI	CDDD	Curround by page	0	Surround enable
B[7]	SKDP	SRBP Surround bypass 1		Surround bypass
B[6]	BTE	Bass/Treble Selection	0	Bass/Treble Disable
D[0]	DIL	bypass	1	Bass/Treble Enable
B[5]	TBDRCE	Two Band DRC Enable	0	Two Band DRC Disable
Б[Э]	IBDRCE	I WO Balld DRC Ellable	1	Two Band DRC Enable
DIAI	NGE	Noise gate enable	0	Noise gate disable
B[4]	INGE INC	Noise gate enable	1	Noise gate enable
B[3]	EQL	EQ Link	0	Each channel uses individual EQ
ارق]	131	LQ LIIIK	1	Channel-2 uses channel-1 EQ
			0	Each channel uses individual
B[2]	PSL	Post-scale link	O	post-scale
			1	Use channel-1 post-scale
B[1]	DSPB	EQ bypass	0	EQ enable
ניוט	טקט	LQ bypass 1	1	EQ bypass
B[0]	HPB	DC blocking HPF	0	HPF dc enable
D[O]	HED	bypass	1	HPF dc bypass

• Address 0X0B, 0X0C and 0X0D : Channel configuration registers

The AD87588 can configure each channel to enable or bypass DRC and channel volume and select the limiter set. AD87588 support two mode of DRC, RMS and PEAK detection which can be selected via bit 4.

Address 0X0B and 0X0C; where x=1 or 2

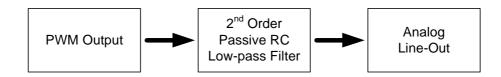
BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7]		Reserved		
B[6]		Reserved		
B[5]		Reserved		
DIAI	CxDRCM	Channel v DDC Made	0	PEAK detection
B[4]	CXDRCIVI	Channel x DRC Mode	1	RMS detection
DIOI	CyDCDD	Channel x Power	0	Channel x PC enable
B[3]	CxPCBP	Clipping bypass	1	Channel x PC bypass
DIOI	CyDDCDD	Channel y DDC hyman	0	Channel x DRC enable
B[2]	CXDRCBP	Channel x DRC bypass	1	Channel x DRC bypass
		Channel x bass	0	Channel x HPF enable
B[1]	CxHPFBP management HPF		1	Channel v HDE hypere
		bypass		Channel x HPF bypass
BIOI	CxVBP	Channel x Volume	0	Channel x's master volume operation
B[0]	CAVEP	bypass	1	Channel x's master volume bypass

Address 0X0D

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7]		Reserved		
B[6]		Reserved		
B[5]		Reserved		
DIAI	C3DRCM	Channel 3 DRC Mode	0	PEAK detection
B[4]	CSDRCIVI	Channel 3 DRC Mode	1	RMS detection
ופום	C3PCBP	Channel 3 Power Clipping	0	Channel 3 PC enable
B[3]	СЭГСБГ	bypass	1	Channel 3 PC bypass
ונטו	C3DRCBP	Ohamad 2 DDC hamasa	0	Channel 3 DRC enable
B[2]	CODRCDP	Channel 3 DRC bypass	1	Channel 3 DRC bypass
D[4]	C3HPFBP	Channel 3 bass	0	Channel 3 LPF enable
B[1]	СЗПРГВР	management LPF bypass	1	Channel 3 LPF bypass
Dioi	C3\/DD	Channel 3 Volume	0	Channel 3 volume operation
B[0]	C3VBP	bypass	1	Channel 3 volume bypass

Publication Date: Oct. 2017 Revision: 1.5 46/71

• Address 0X0E : DRC limiter attack/release rate


The AD87588 defines a set of limiter. The attack/release rates are defines as following table.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			0000	3 dB/ms
			0001	2.667 dB/ms
			0010	2.182 dB/ms
			0011	1.846 dB/ms
			0100	1.333 dB/ms
			0101	0.889 dB/ms
			0110	0.4528 dB/ms
DIZ.EI	10.014.1	DDC attack rate	0111	0.2264 dB/ms
B[7:5]	LA[3:0]	DRC attack rate	1000	0.15 dB/ms
			1001	0.1121 dB/ms
			1010	0.0902 dB/ms
			1011	0.0752 dB/ms
			1100	0.0645 dB/ms
			1101	0.0563 dB/ms
			1110	0.0501 dB/ms
			1111	0.0451 dB/ms
			0000	0.5106 dB/ms
			0001	0.1371 dB/ms
			0010	0.0743 dB/ms
			0011	0.0499 dB/ms
			0100	0.0360 dB/ms
			0101	0.0299 dB/ms
			0110	0.0264 dB/ms
D[3:0]	I DIS-01	DBC release rete	0111	0.0208 dB/ms
B[3:0]	LR[3:0]	DRC release rate	1000	0.0198 dB/ms
			1001	0.0172 dB/ms
			1010	0.0147 dB/ms
			1011	0.0137 dB/ms
			1100	0.0134 dB/ms
			1101	0.0117 dB/ms
			1110	0.0112 dB/ms
			1111	0.0104 dB/ms

Address 0X11 : State control 5

AD87588 can output PWM signal via the pins of SDATA1 and LINEIN by enabling LOM register. The Left / Right channel or subwoofer PWM output source can be selected via LOS register.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7]	LOM	Line out mode	0	Disable
B[7]	LOIVI	Line out mode	1	Enable
				Source from left and right channel
B[6]	LOS	Line out source	0	LINEIN pin → Left channel
D[0]	100	Line out source		SDATA1 pin → Right channel
			1	Source from subwoofer
DIEI	SW_RSTB	Software reset	0	Reset
B[5]	SW_KSIB		1	Normal operation
B[4]		Reserved		
B[3]		Reserved		
DIOI	DIS_MCLK_DET	Disable MCLK detect	0	Enable MCLK detect circuit
B[2]	DIS_INICEK_DET	circuit	1	Disable MCLK detect circuit
D[4]	QT_EN	Dower saving made	0	Disable
B[1]	Q1_EN	Power saving mode	1	Enable
BIOI	PWM_SEL	PWM modulation	0	Qua-ternary
B[0]	F VVIVI_SEL	F WWW IIIOUUIAUOII	1	Ternary

Publication Date: Oct. 2017 Revision: 1.5 48/71

• Address 0X12 : Class-D under voltage selection

AD87588 can disable HV under voltage detection via bit 7.

AD87588 support multi-level HV under voltage detection via bit3~ bit0, using this function, AD87588 will fade out signal to avoid pop sounds if high voltage supply disappear before low voltage supply.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7]	Dis HVUV	Disable HV under	0	Enable
B[7]	טוא_האטע	voltage selection	1	Disable
B[6:4]		Reserved		
		UV detection level	0000	8.2V
			0001	9.7V
D[3.0]	HV UV SEL		0011	13.2 V
B[3:0]	UATON SEL		0100	15.5 V
			1100	19.5 V
			Others	9.7V

Note: Under voltage range has +/-10% max variation due to process window.

Publication Date: Oct. 2017 Revision: 1.5 49/71

Address 0X13 : Noise gate gain

AD87588 provide noise gate function if receiving 2048 signal sample points smaller than noise gate attack level. User can change noise gate gain via bit1~ bit0. When noise gate function occurs, input signal will multiply noise gate gain (x1/8, x1/4 x1/2, x0). User can select fade out or not via bit 4.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:5]		Reserved		
DIAI	DIS NO FADE	Disable noise gets fode	0	Fade
B[4]	DIS_NG_FADE	Disable noise gate fade	1	No fade
B[3:2]		Reserved		
			00	x1/8
D[4.0]		Noise gate gain	01	x1/4
B[1:0] NG_GAIN[1:0]	NG_GAIN[1:0]		10	x1/2
			11	Mute

Address 0X14 ~0X24 : User-defined coefficients registers

An on-chip RAM in AD87588 stores user-defined EQ and mixing coefficients. The content of this coefficient RAM is indirectly accessed via coefficient registers, which consist of one base address register (address 0X14), five sets of registers (address 0X15 to 0X23) of three consecutive 8-bit entries for each 24-bit coefficient, and one control register (address 0X24) to control access of the coefficients in the RAM.

Address 0X14

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7]		Reserved		
B[6:0]	CFA[6:0]	Coefficient RAM base	0000000	
D[0.0]	O1 A[0.0]	address	0000000	

Address 0X15, A1cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0] C4D[00:	C4D[33:46]	Top 8-bits of		
Б[7.0]	B[7:0] C1B[23:16]	coefficients A1		

Publication Date: Oct. 2017 Revision: 1.5 50/71

Address 0X16, A1cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0] 04D[45:0]	Middle 8-bits of			
B[7:0]	C1B[15:8]	coefficients A1		

Address 0X17, A1cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
DIZ-01 CADIZ-01	Bottom 8-bits of			
B[7:0]	C1B[7:0]	coefficients A1		

Address 0X18, A2cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7.0] COD[00.40]	Top 8-bits of			
B[7:0]	C2B[23:16]	coefficients A2		

Address 0X19, A2cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0] COD[45:0]	Middle 8-bits of			
B[7:0]	C2B[15:8]	coefficients A2		

Address 0X1A, A2cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
DI7 01 00DI7 01	Bottom 8-bits of			
B[7:0]	C2B[7:0]	coefficients A2		

Address 0X1B, B1cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7.0] C2D[2	C3B[23:16]	Top 8-bits of		
B[7:0]	C3D[23.16]	coefficients B1		

Address 0X1C, B1cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	D[7.0] 00D[45.0]	Middle 8-bits of		
B[7:0]	C3B[15:8]	coefficients B1		

Publication Date: Oct. 2017 Revision: 1.5 51/71

Address 0X1D, B1cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	C2D[7.0]	Bottom 8-bits of		
B[7:0]	C3B[7:0]	coefficients B1		

Address 0X1E, B2cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	Top 8-bits of			
B[7:0]	C4B[23:16]	coefficients B2		

Address 0X1F, B2cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	D[7:0] 04D[45:0]	Middle 8-bits of		
B[7:0]	C4B[15:8]	coefficients B2		

Address 0X20, B2cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7.0] 04D[7.0]	Bottom 8-bits of			
B[7:0]	C4B[7:0]	coefficients B2		

Address 0X21, A0cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
DIZ.OL OFDIO	C5B[23:16]	Top 8-bits of		
B[7:0]	C3B[23.10]	coefficients A0		

Address 0X22, A0cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	C5B[15:8]	Middle 8-bits of		
Б[7.0]	C3B[13.6]	coefficients A0		

Address 0X23, A0cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7.0] OFD[7.0]	Bottom 8-bits of			
B[7:0]	C5B[7:0]	coefficients A0		

Publication Date: Oct. 2017 Revision: 1.5 52/71

Address 0X24, CfRW

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:4]		Reserved		
DIOI	RA	Enable of reading a set of	0	Read complete
B[3]	KA	coefficients from RAM	1	Read enable
DIOI	DIOI D4	Enable of reading a single	0	Read complete
B[2]	R1	coefficients from RAM	1	Read enable
D[4]	WA	Enable of writing a set of	0	Write complete
B[1]	WA	coefficients to RAM	1	Write enable
D[O]	W1	Enable of writing a single	0	Write complete
B[0]	VVI	coefficient to RAM	1	Write enable

Address 0X2A: Power saving mode switching level

If the PWM exceeds the programmed switching power level (default 26*40ns), the modulation algorithm will change from quaternary into power saving mode. It results in higher power efficiency during larger power output operations. If the PWM drops below the programmed switching power level, the modulation algorithm will change back to quaternary modulation.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7]		Reserved		
B[6]		Reserved		
B[5]		Reserved		
			11111	62
			11110	60
			:	:
			10000	32
DIALOI	QT_SW_LEVEL	Cwitching lovel	01111	30
B[4:0]	QI_SW_LEVEL	Switching level	01110	28
			01101	26
			:	:
			00001	4
			00000	4

Publication Date: Oct. 2017 Revision: 1.5 54/71

Address 0X2B : Volume fine tune

AD87588 supports both master-volume fine tune and channel-volume control fine tune modes. Both volume control settings range from $0dB \sim -0.375dB$ and 0.125dB per step. Note that the master volume fine tune is added to the individual channel volume fine tune as the total volume fine tune.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00	0dB
DIZ.61	MV_FT	Master Volume Fine	01	-0.125dB
B[7:6]	IVIV_F I	Tune	10	-0.25dB
			11	-0.375dB
			00	0dB
D[E: 4]	C1V_FT	Channel 1 Volume Fine	01	-0.125dB
B[5:4]	CIV_FI	Tune	10	-0.25dB
			11	-0.375dB
			00	0dB
D[3·3]	C2V_FT	Channel 2 Volume Fine	01	-0.125dB
B[3:2]	CZV_F1	Tune	10	-0.25dB
			11	-0.375dB
			00	0dB
DIA-OI	C3V_FT	Channel 3 Volume Fine	01	-0.125dB
B[1:0]	C3V_F1	Tune	10	-0.25dB
			11	-0.375dB

Publication Date: Oct. 2017 Revision: 1.5 55/71

Address 0X2C : OC level

AD87588 supports OC level increasing adjustment for VDDL/R<=18V application via bit5~bit4. The default OC step is at lowest OC level, 72k (I_{SC} level please refer to page 6, electrical characteristic table), user can program it to avoid abnormal OC trigger while the load smaller 8ohm is adopted. The OC level adjustment is prohibited for VDDL/R>18V application, the larger OC level may lead to short protection level weakness.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7]	OCBIT2		1	Turn On
B[7]	OCBI12 OC Delay bit	OC Delay bit2	0	Turn off
DIE]	OCBIT1 OC Delay bit1	OC Dolay bit1	1	Turn On
B[6]		0	Turn off	
			00	72k
DIE: 41	S[5:4] SCM Short circuit level	Short circuit lovel	01	66k
D[3.4]		10	60k	
			11	54k
B[3:0]		Reserved		

T _A =25°C	B[5:4]		OC level @12V
	00	72k	2.7A
Short circuit level	01	66k	2.95A
adjustment	10	60k	3.25A
	11	54k	3.6A

Publication Date: Oct. 2017 Revision: 1.5 56/71

RAM access

The procedure to read/write coefficient(s) from/to RAM is as followings:

Read a single coefficient from RAM:

- 1. Write 7-bis of address to I2C address-0X14
- 2. Write 1 to R1 bit in address-0X24
- 3. Read top 8-bits of coefficient in I2C address-0X15
- 4. Read middle 8-bits of coefficient in I2C address-0X16
- 5. Read bottom 8-bits of coefficient in I2C address-0X17

Read a set of coefficients from RAM:

- 1. Write 7-bits of address to I2C address-0X14
- 2. Write 1 to RA bit in address-0X24
- 3. Read top 8-bits of coefficient A1 in I2C address-0X15
- 4. Read middle 8-bits of coefficient A1in I2C address-0X16
- 5. Read bottom 8-bits of coefficient A1 in I2C address-0X17
- 6. Read top 8-bits of coefficient A2 in I2C address-0X18
- 7. Read middle 8-bits of coefficient A2 in I2C address-0X19
- 8. Read bottom 8-bits of coefficient A2 in I2C address-0X1A
- 9. Read top 8-bits of coefficient B1 in I2C address-0X1B
- 10. Read middle 8-bits of coefficient B1 in I2C address-0X1C
- 11. Read bottom 8-bits of coefficient B1 in I2C address-0X1D
- 12. Read top 8-bits of coefficient B2 in I2C address-0X1E
- 13. Read middle 8-bits of coefficient B2 in I2C address-0X1F
- 14. Read bottom 8-bits of coefficient B2 in I2C address-0X20
- 15. Read top 8-bits of coefficient A0 in I2C address-0X21
- 16. Read middle 8-bits of coefficient A0 in I2C address-0X22
- 17. Read bottom 8-bits of coefficient A0 in I2C address-0X23

Write a single coefficient from RAM:

- 1. Write 7-bis of address to I2C address-0X14
- 2. Write top 8-bits of coefficient in I2C address-0X15
- 3. Write middle 8-bits of coefficient in I2C address-0X16
- 4. Write bottom 8-bits of coefficient in I2C address-0X17
- 5. Write 1 to W1 bit in address-0X24

Publication Date: Oct. 2017 Revision: 1.5 57/71

Write a set of coefficients from RAM:

- 1. Write 7-bits of address to I2C address-0X14
- 2. Write top 8-bits of coefficient A1 in I2C address-0X15
- 3. Write middle 8-bits of coefficient A1 in I2C address-0X16
- 4. Write bottom 8-bits of coefficient A1 in I2C address-0X17
- 5. Write top 8-bits of coefficient A2 in I2C address-0X18
- 6. Write middle 8-bits of coefficient A2 in I2C address-0X19
- 7. Write bottom 8-bits of coefficient A2 in I2C address-0X1A
- 8. Write top 8-bits of coefficient B1 in I2C address-0X1B
- 9. Write middle 8-bits of coefficient B1 in I2C address-0X1C
- 10. Write bottom 8-bits of coefficient B1 in I2C address-0X1D
- 11. Write top 8-bits of coefficient B2 in I2C address-0X1E
- 12. Write middle 8-bits of coefficient B2 in I2C address-0X1F
- 13. Write bottom 8-bits of coefficient B2 in I2C address-0X20
- 14. Write top 8-bits of coefficient A0 in I2C address-0X21
- 15. Write middle 8-bits of coefficient A0 in I2C address-0X22
- 16. Write bottom 8-bits of coefficient A0 in I2C address-0X23
- 17. Write 1 to WA bit in address-0X24

Note that: the read and write operation on RAM coefficients works only if LRCIN (pin-15) switching on rising edge. And, before each writing operation, it is necessary to read the address-0X24 to confirm whether RAM is writable current in first. If the logic of W1 or WA is high, the coefficient writing is prohibited.

Publication Date: Oct. 2017 Revision: 1.5 58/71

User-defined equalizer

The AD87588 provides 18 parametric Equalizer (EQ). Users can program suitable coefficients via I²C control interface to program the required audio band frequency response for every EQ. The transfer function

$$H(z) = \frac{A_0 + A_1 z^{-1} + A_2 z^{-2}}{1 + B_1 z^{-1} + B_2 z^{-2}}$$

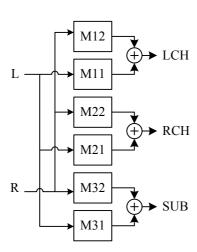
The data format of 2's complement binary code for EQ coefficient is 3.21. i.e., 3-bits for integer (MSB is the sign bit) and 21-bits for mantissa. Each coefficient range is from 0x800000 (-4) to 0x7FFFF (+3.999999523). These coefficients are stored in User Defined RAM and are referenced in following manner:

$$CHxEQyA0 = A0$$

$$CHxEQyA1 = A1$$

$$CHxEQyA2 = A2$$

$$CHxEQyB1 = -B1$$


$$CHxEQyB2 = -B2$$

Where x and y represents the number of channel and the band number of EQ equalizer.

All user-defined filters are path-through, where all coefficients are defaulted to 0 after being powered up, except the A0 that is set to 0x200000 which represents 1.

Mixer

The AD87588 provides mixers to generate the extra audio source from the input left and right channels. The coefficients of mixers are defined in range from 0x800000 (-1) to 0x7FFFFF (0.9999998808). The function block diagram is as following:

Elite Semiconductor Memory Technology Inc. Publication Date: Oct. 2017

Revision: 1.5 59/71

Pre-scale

For each audio channel, AD87588 can scale input signal level prior to EQ processing which is realized by a 24-bit signed fractional multiplier. The pre-scale factor, ranging from -1 (0x800000) to 0.9999998808 (0x7FFFFF), for this multiplier, can be loaded into RAM. The default values of the pre-scaling factors are set to 0x7FFFFF. Programming of RAM is described in RAM access.

Post-scale

The AD87588 provides an additional multiplication after equalizing and before interpolation stage, which is realized by a 24-bit signed fractional multiplier. The post-scaling factor, ranging from -1 (0x800000) to 0.9999998808 (0x7FFFFF), for this multiplier, can be loaded into RAM. The default values of the post-scaling factors are set to 0x7FFFFF. All channels can use the channel-1 post-scale factor by setting the post-scale link. Programming of RAM is described in RAM access.

Power Clipping

The AD87588 provides power clipping function to avoid excessive signal that may destroy loud speaker. Two sets of power clipping are provided. One is used for both channel 1 and channel 2, while the other is used for channel 3. The power clipping level is defined by 24-bit representation and is stored in RAM address 0X6F and 0X70. The following table shows the power clipping level's numerical representation.

Sample calculation for power clipping

May amplitude	litude dB Linear Decimal		Hex	
Max amplitude	uБ	Linear	Decimai	(3.21 format)
VDDL/R	0	1	2097152	200000
VDDL/R * 0.707	-3	0.707	1482686	169FBE
VDDL/R * 0.5	-6	0.5	1048576	100000
VDDL/R * L	х	L=10 ^(x/20)	D=2097152xL	H=dec2hex(D)

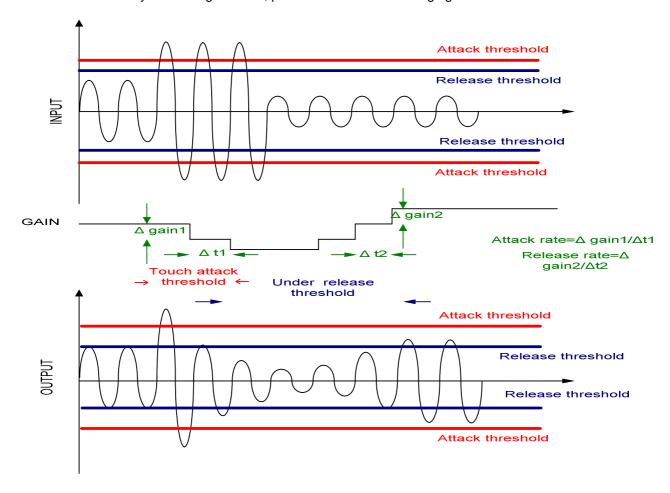
Publication Date: Oct. 2017 Revision: 1.5 60/71

Attack threshold for Dynamic Range Control (DRC)

The AD87588 provides dynamic range control (DRC) function. When the input RMS exceeds the programmable attack threshold value, the output power will be limited by this threshold power level via gradual gain reduction. Two sets of dynamic range control are provided. One is used of channel 1 and channel 2, while the other is used for channel3. Attack threshold is defined by 24-bit representation and is stored in RAM address 0X71 and 0X72.

Release threshold for Dynamic Range Control (DRC)

After AD87588 has reached the attack threshold, its output power will be limited to that level. The output power level will be gradually adjusted to the programmable release threshold level. Two sets of dynamic range control are provided. One is used of channel 1 and channel 2, while the other is used for channel3. Release threshold is defined by 24-bit representation and is stored in RAM address 0X73 and 0X74. The following table shows the attack and release threshold's numerical representation.


Sample calculation for attack and release threshold

Dawar	٩D	Lincor	Desimal	Hex
Power	dB	Linear	Decimal	(3.21 format)
(VDDL/R^2)/R _L	0	1	2097152	200000
(VDDL/R^2)/2R _L	-3	0.5	1048576	100000
(VDDL/R^2)/4R _L	-6	0.25	524288	80000
((VDDL/R^2)/R _L)*L	Х	L=10 ^(x/10)	D=2097152xL	H=dec2hex(D)

Publication Date: Oct. 2017 Revision: 1.5 61/71

To best illustrate the dynamic range control, please refer to the following figure.

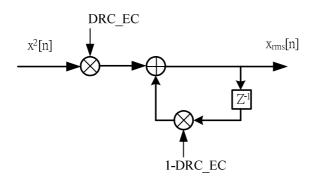
Publication Date: Oct. 2017 Revision: 1.5 62/71

Noise Gate Attack Level

When both left and right signals have 2048 consecutive sample points less than the programmable noise gate attack level, the audio signal will multiply noise gate gain, which can be set at x1/8, x1/4, x1/2, or zero if the noise gate function is enabled. Noise gate attack level is defined by 24-bit representation and is stored in RAM address 0X75.

Noise Gate Release Level

After entering the noise gating status, the noise gain will be removed whenever AD82586B receives any input signal that is more than the noise gate release level. Noise gate release level is defined by 24-bit representation and is stored in RAM address 0X76. The following table shows the noise gate attack and release threshold level's numerical representation.


Sample calculation for noise gate attack and release level

Input amplitude	Linaar	Decimal	Hex
(dB)	Linear	Decimai	(1.23 format)
0	1	8388607	7FFFF
-100	10 ⁻⁵	83	53
-110	10 ^{-5.5}	26	1A
х	L=10 ^(x/20)	D=8388607xL	H=dec2hex(D)

Publication Date: Oct. 2017 Revision: 1.5 63/71

DRC Energy Coefficient

The above figure illustrates the digital processing of calculating RMS signal power. In this processing, a DRC energy coefficient is required, which can be programmed for different frequency range. Two sets of energy coefficients are provided. One is used of channel 1 and channel 2, while the other is used for channel3. Energy coefficient is defined by 24-bit representation and is stored in RAM address 0X77 and 0X78. The following table shows the DRC energy coefficient numerical representation.

Sample calculation for DRC energy coefficient

DRC energy	dB	Linear	Decimal	Hex
coefficient				(1.23 format)
1	0	1	8388607	7FFFF
1/256	-48.2	1/256	32768	8000
1/1024	-60.2	1/1024	8192	2000
L	Х	L=10 ^(x/20)	D=8388607xL	H=dec2hex(D)

Publication Date: Oct. 2017 Revision: 1.5 64/71

The user defined RAM

The contents of user defined RAM is represented in following table.

Address	NAME	Coefficient	Default
0x00		CH1EQ1A1	0x000000
0x01		CH1EQ1A2	0x000000
0x02	Channel-1 EQ1	CH1EQ1B1	0x000000
0x03		CH1EQ1B2	0x000000
0x04		CH1EQ1A0	0x200000
0x05		CH1EQ2A1	0x000000
0x06		CH1EQ2A2	0x000000
0x07	Channel-1 EQ2	CH1EQ2B1	0x000000
0x08		CH1EQ2B2	0x000000
0x09		CH1EQ2A0	0x200000
0x0A		CH1EQ3A1	0x000000
0x0B		CH1EQ3A2	0x000000
0x0C	Channel-1 EQ3	CH1EQ3B1	0x000000
0x0D		CH1EQ3B2	0x000000
0x0E		CH1EQ3A0	0x200000
0x0F		CH1EQ4A1	0x000000
0x10		CH1EQ4A2	0x000000
0x11	Channel-1 EQ4	CH1EQ4B1	0x000000
0x12		CH1EQ4B2	0x000000
0x13		CH1EQ4A0	0x200000
0x14		CH1EQ5A1	0x000000
0x15		CH1EQ5A2	0x000000
0x16	Channel-1 EQ5	CH1EQ5B1	0x000000
0x17		CH1EQ5B2	0x000000
0x18		CH1EQ5A0	0x200000
0x19		CH1EQ6A1	0x000000
0x1A		CH1EQ6A2	0x000000
0x1B	Channel-1 EQ6	CH1EQ6B1	0x000000
0x1C		CH1EQ6B2	0x000000
0x1D		CH1EQ6A0	0x200000
0x1E		CH1EQ7A1	0x000000
0x1F	Channel-1 EQ7	CH1EQ7A2	0x000000
0x20		CH1EQ7B1	0x000000

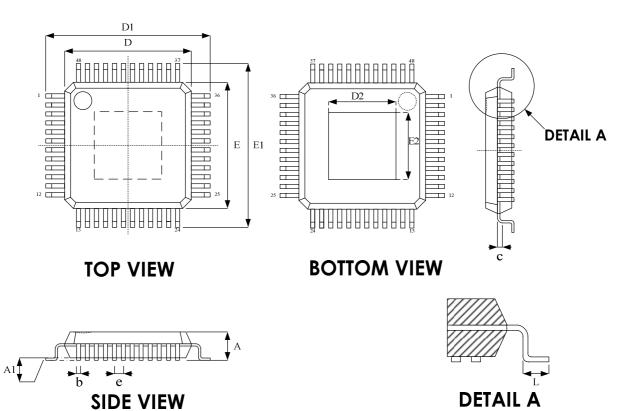
Publication Date: Oct. 2017 Revision: 1.5 65/71

0x21		CH1EQ7B2	0x000000
0x22		CH1EQ7A0	0x200000
0x23		CH1EQ8A1	0x000000
0x24		CH1EQ8A2	0x000000
0x25	Channel-1 EQ8	CH1EQ8B1	0x000000
0x26		CH1EQ8B2	0x000000
0x27		CH1EQ8A0	0x200000
0x28		CH1EQ9A1	0x000000
0x29		CH1EQ9A2	0x000000
0x2A	Channel-1 EQ9	CH1EQ9B1	0x000000
0x2B		CH1EQ9B2	0x000000
0x2C		CH1EQ9A0	0x200000
0x2D		CH3EQ1A1	0x000000
0x2E		CH3EQ1A2	0x000000
0x2F	Channel-3 EQ1	CH3EQ1B1	0x000000
0x30		CH3EQ1B2	0x000000
0x31		CH3EQ1A0	0x200000
0x32		CH2EQ1A1	0x000000
0x33		CH2EQ1A2	0x000000
0x34	Channel-2 EQ1	CH2EQ1B1	0x000000
0x35		CH2EQ1B2	0x000000
0x36		CH2EQ1A0	0x200000
0x37		CH2EQ2A1	0x000000
0x38		CH2EQ2A2	0x000000
0x39	Channel-2 EQ2	CH2EQ2B1	0x000000
0x3A		CH2EQ2B2	0x000000
0x3B		CH2EQ2A0	0x200000
0x3C		CH2EQ3A1	0x000000
0x3D		CH2EQ3A2	0x000000
0x3E	Channel-2 EQ3	CH2EQ3B1	0x000000
0x3F		CH2EQ3B2	0x000000
0x40		CH2EQ3A0	0x200000
0x41		CH2EQ4A1	0x000000
0x42		CH2EQ4A2	0x000000
0x43	Channel-2 EQ4	CH2EQ4B1	0x000000
0x44		CH2EQ4B2	0x000000
0x45		CH2EQ4A0	0x200000

Publication Date: Oct. 2017 Revision: 1.5 66/71

0x46		CH2EQ5A1	0x000000
0x47		CH2EQ5A2	0x000000
0x48	Channel-2 EQ5	CH2EQ5B1	0x000000
0x49		CH2EQ5B2	0x000000
0x4A		CH2EQ5A0	0x200000
0x4B		CH2EQ6A1	0x000000
0x4C		CH2EQ6A2	0x000000
0x4D	Channel-2 EQ6	CH2EQ6B1	0x000000
0x4E		CH2EQ6B2	0x000000
0x4F		CH2EQ6A0	0x200000
0x50		CH2EQ7A1	0x000000
0x51		CH2EQ7A2	0x000000
0x52	Channel-2 EQ7	CH2EQ7B1	0x000000
0x53		CH2EQ7B2	0x000000
0x54		CH2EQ7A0	0x200000
0x55		CH2EQ8A1	0x000000
0x56		CH2EQ8A2	0x000000
0x57	Channel-2 EQ8	CH2EQ8B1	0x000000
0x58		CH2EQ8B2	0x000000
0x59		CH2EQ8A0	0x200000
0x5A		CH2EQ9A1	0x000000
0x5B		CH2EQ9A2	0x000000
0x5C	Channel-2 EQ9	CH2EQ9B1	0x000000
0x5D		CH2EQ9B2	0x000000
0x5E		CH2EQ9A0	0x200000
0x5F		CH3EQ2A1	0x000000
0x60		CH3EQ2A2	0x000000
0x61	Channel-3 EQ2	CH3EQ2B1	0x000000
0x62		CH3EQ2B2	0x000000
0x63		CH3EQ2A0	0x200000
0x64	Channel-1 Mixer1	M11	0x7FFFFF
0x65	Channel-1 Mixer2	M12	0x000000
0x66	Channel-2 Mixer1	M21	0x000000
0x67	Channel-2 Mixer2	M22	0x7FFFFF
0x68	Channel-3 Mixer1	M31	0x400000
0x69	Channel-3 Mixer2	M32	0x400000
0x6A	Channel-1 Prescale	C1PRS	0x7FFFFF

Publication Date: Oct. 2017 Revision: 1.5 67/71


0x6B	Channel-2 Prescale	C2PRS	0x7FFFFF	
0x6C	Channel-1 Postscale	C1POS	0x7FFFFF	
0x6D	Channel-2 Postscale	C2POS	0x7FFFFF	
0x6E	Channel-3 Postscale	C3POS	0x7FFFFF	
0x6F	CH1.2 Power Clipping	PC1	0x200000	
0x70	CH3 Power Clipping	PC2	0x200000	
0x71	CH1.2 DRC Attack	DRC1_ATH	0x200000	
0.7.1	threshold	DRC1_ATH	0.20000	
0x72	CH1.2 DRC Release	DRC1_RTH	0x80000	
UXIZ	threshold	DICT_ICTH	0,00000	
0x73	CH3 DRC Attack	DRC2 ATH	0x200000	
0.773	threshold	DNO2_ATTI	0,20000	
0x74	CH3 DRC Release	DRC2_RTH	0x80000	
0.7.4	threshold	DNO2_NTH	0,00000	
0x75	Noise Gate Attack Level	NGAL	0x00001A	
0x76	Noise Gate Release	NGRL	0x000053	
0.70	Level	NGKL	0x000033	
0x77	DRC1 Energy Coefficient	DRC1_EC	0x80000	
0X78	DRC2 Energy Coefficient	DRC2_EC	0x20000	

Publication Date: Oct. 2017 Revision: 1.5 68/71

Package Dimensions

• E-LQFP 48L (7x7mm)

Symbol	Dimension in mm		
	Min	Max	
А		1.60	
A1	0.05	0.15	
Ъ	0.17	0.27	
С	0.09	0.20	
D	6.90	7.10	
D1	8.90	9.10	
Е	6.90	7.10	
E1	8.90	9.10	
е	0.50 BSC		
L	0.45	0.75	

Ex _j	posed	pad

	Dimension in mm	
	Min	Max
D2	4.31	5.21
E2	4.31	5.21

Publication Date: Oct. 2017 Revision: 1.5 69/71

Revision History

Revision	Date	Description
0.1	2014.10.02	Initial version.
0.2	2015.02.03	 Added 12V OC data into this datasheet. Operating temperature supports from 0'C~70'C changed to -10'C~70'C.
1.0	2015.02.10	Remove preliminary word and modify version to 1.0
1.1	2015.10.19	Modified line-driver start-up time.
1.2	2016.02.24	 Updated line-driver UVP operating information. Updated line-driver power on sequence. Added Class-D HVUV range information into.
1.3	2016.06.29	Add packing code in ordering information table.
1.4	2016.11.22	Add tape reel packing
1.5	2017.10.06	Add description of LOS and LOS in address 0X11

Important Notice

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.

The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.

Publication Date: Oct. 2017 Revision: 1.5 71/71