$\propto \mathcal{N}_{\varepsilon \omega} \mathcal{I}_{\varepsilon \tau 1 \varepsilon y} S_{\varepsilon m i-C o n d u c t o r} \mathfrak{P}_{\text {roducts, }}, I_{n c}$.

GENERAL PURPOSE APPLICATIONS

DESCRIPTION

The BCY70, BCY71 and BCY72 are silicon planar epitaxial PNP transistors in Jedec TO-18 metal case.

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value			Unit
		BCY70	BCY71	BCY72	
$V_{\text {cbo }}$	Collector-base Voltage ($\mathrm{I}_{\mathrm{E}}=0$)	- 50	-45	-25	V
$V_{\text {CEO }}$	Collector-emitter Voltage ($\mathrm{I}_{\mathrm{B}}=0$)	-40	-45	-25	V
$\mathrm{V}_{\text {Ebo }}$	Emitter-base Voltage ($\mathrm{I}_{\mathrm{C}}=0$)	-5			V
I_{CM}	Collector Peak Current	-200			mA
$\mathrm{P}_{\text {tot }}$	Total Power Dissipation at $\mathrm{T}_{\text {amb }} \leq 25^{\circ} \mathrm{C}$	350			mW
$\mathrm{T}_{\mathbf{s t g} \text { g }}, \mathrm{T}_{\mathrm{f}}$	Storage and Junction Temperature	-65 to 200			${ }^{\circ} \mathrm{C}$

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

I HEHMAL DAIA

$\mathrm{R}_{\text {th }}$ j-case				
$\mathrm{R}_{\text {th j-amb }}$	Thermal Resistance Junction-case	Thermal Resistance Junction-ambient	Max	150
${ }^{\circ} \mathrm{C} / \mathrm{W}$				

ELECTRICAL CHARACTERISTICS ($T_{a m b}=25^{\circ} \mathrm{C}$ unless otherwise specifled)

Symbol	Parameter	Test Condiltions	MIn.	Typ.	Max.	Unlt
Iges	Collector Cutoff Current ($\mathrm{V}_{\mathrm{BE}}=0$)	For BCY70 $V_{C E}=-20 \mathrm{~V}$ $V_{C E}=-50 \mathrm{~V}$ For BCY71 $V_{C B}=-20 \mathrm{~V}$ $V_{C B}=-45 \mathrm{~V}$ For BCY72 $V_{C B}=-20 \mathrm{~V}$ $V_{C B}=-25 \mathrm{~V}$			$\left\lvert\, \begin{aligned} & -10 \\ & -500 \\ & -100 \\ & -10 \\ & -100 \\ & -10 \end{aligned}\right.$	nA nA nA $\mu \mathrm{A}$ nA $\mu \mathrm{A}$
Iebo	Emitter cutoff Current $\left(I_{C}=0\right)$	$V_{\text {Eb }}=-5 \mathrm{~V}$			- 10	$\mu \mathrm{A}$
$V_{\text {ce(sat) }}{ }^{*}$	Collector-emitter Saturation Voitage	$\begin{array}{ll} I_{\mathrm{C}}=-10 \mathrm{~mA} & I_{\mathrm{B}}=-1 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{C}}=-50 \mathrm{~mA} & \mathrm{I}_{\mathrm{B}}=-5 \mathrm{~mA} \\ \hline \end{array}$			$\begin{array}{\|c} -0.25 \\ -0.5 \\ \hline \end{array}$	$\begin{aligned} & V \\ & v \end{aligned}$
$\mathrm{V}_{\mathrm{BE} \text { (sat) }}{ }^{*}$	Base-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA} \quad \mathrm{I}_{\mathrm{B}}=-1 \mathrm{~mA}$ For BCY70 and BCY71 Only $\mathrm{I}_{\mathrm{C}}=-50 \mathrm{~mA} \quad \mathrm{I}_{\mathrm{B}}=-5 \mathrm{~mA}$	-0.6		$\left\lvert\, \begin{aligned} & -0.9 \\ & -1.2 \end{aligned}\right.$	$\stackrel{V}{v}$
$\mathrm{h}_{\text {FE }}{ }^{*}$	DC Current Gain	For BCY70 $\mathrm{I}_{\mathrm{c}}=-0.1 \mathrm{~mA}$ $V_{C E}=-1 V$ $I_{C}=-1 \mathrm{~mA}$ $V_{C E}=-1 V$ $\mathrm{If}_{\mathrm{c}}=-10 \mathrm{~mA}$ $V_{C E}=-1 V$ $\mathrm{I}_{\mathrm{C}}=-50 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{CE}}=-1 \mathrm{~V}$ For BCY71 $\mathrm{I}_{\mathrm{C}}=-0.01 \mathrm{~mA}$ $V_{C E}=-1 V$ $\mathrm{I}_{\mathrm{c}}=-0.1 \mathrm{~mA}$ $V_{c E}=-1 V$ $\mathrm{I}_{\mathrm{C}}^{\mathrm{a}} \mathrm{a}-1 \mathrm{~mA}$ $V_{C E}=-1 V$ $\mathrm{I}_{\mathrm{c}}=-10 \mathrm{~mA}$ $V_{C E}=-1 V$ $\mathrm{I}_{\mathrm{c}}=-50 \mathrm{~mA}$ $V_{G E}=-i V$ For BCY72 $\mathrm{I}_{\mathrm{c}}=-1 \mathrm{~mA}$ $V_{O E}=-1 \mathrm{~V}$ $\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{CE}}=-1 \mathrm{~V}$	40 45 50 15 80 90 100 15 40 50	60	600	
$\mathrm{hfo}_{\text {f }}$	Small Signal Current Galn (for BCY71 only)	$\begin{aligned} & \mathrm{I}_{\mathrm{c}}=-1 \mathrm{~mA} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned} \quad \mathrm{VCE}=-10 \mathrm{~V}$	100		400	
f_{T}	Transition Frequency	$I_{\mathrm{C}}=-0.1 \mathrm{~mA}$ $V_{C E}=-20 \mathrm{~V}$ $\mathrm{f}=10.7 \mathrm{MHz}$ For BCY 71 $\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}$ $\mathrm{~V}_{\mathrm{CE}}=-20 \mathrm{~V}$ $\mathrm{f}=100 \mathrm{MHz}$ For BCY70 For BCY70 For BCY70 and BCY72	15 250 200			MHz MHz MHz
Cebo	Emitter-base Capacitance	$\begin{array}{ll} \begin{array}{l} l_{G}=0 \\ f=1 \mathrm{MHz} \end{array} & V_{E B}=-1 \mathrm{~V} \end{array}$			8	pF
Ccbo	Collector-base Capacitance	$\begin{array}{ll} l_{E}=0 & V_{C B}=-10 \mathrm{~V} \\ f=1 \mathrm{MHz} & \end{array}$			6	pF

[^0]ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
NF	Noise Figure	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{C}}=-0.1 \mathrm{~mA} \quad V_{\mathrm{CE}}=-5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{g}}=2 \mathrm{kS} \\ & \mathrm{f}=10 \text { to } 10000 \mathrm{~Hz} \\ & \text { For } \mathrm{BCY70} \text { and } \mathrm{BCY72} \\ & \\ & \end{aligned}$			$\begin{aligned} & 6 \\ & 2 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~dB} \end{gathered}$
$h_{\text {le }}$	Input Impedance (for BCY71 only)	$\begin{array}{ll} \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA} \\ \mathrm{f}=1 \mathrm{kHz} & \mathrm{~V}_{\mathrm{CE}}=-10 \mathrm{~V} \end{array}$	2		12	$\mathrm{k} \Omega$
$h_{\text {re }}$	Reverse Voltage Ratio (for BCY71 only)	$\begin{array}{ll} I_{C}=-1 \mathrm{~mA} & V_{C E}=-10 \mathrm{~V} \\ f=1 \mathrm{kHz} & \end{array}$			20×10^{-4}	
h_{0}	Output Admittance (for BCY71 only)	$\begin{array}{ll} \begin{array}{l} \mathrm{IC}=-1 \mathrm{~mA} \\ \mathrm{f}=1 \mathrm{kHz} \end{array} & V_{C E}=-10 \mathrm{~V} \end{array}$	10		60	$\mu \mathrm{S}$
t_{d}	Delay Time (for BCY70 and BCY72 only)	$\begin{array}{ll} \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA} & V_{\mathrm{EE}}=3 \mathrm{~V} \\ \mathrm{I}_{\mathrm{B} 1}=-1 \mathrm{~mA} & \end{array}$		23	35	ns
t_{r}	Rise Time (for BCY70 and BCY72 only)	$\begin{array}{ll} \mathrm{I}_{\mathrm{c}}=-10 \mathrm{~mA} & V_{\mathrm{EE}}=3 \mathrm{~V} \\ \mathrm{I}_{\mathrm{B} 1}=-1 \mathrm{~mA} & \end{array}$		25	35	ns
ts	Storage Time (for BCY70 and BCY72 only)	$\begin{aligned} & \mathrm{I}_{\mathrm{c}}=-10 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{EE}}=3 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{B} 1}=-\mathrm{I}_{\mathrm{B} 2}=-1 \mathrm{~mA} \end{aligned}$		270	350	ns
t_{1}	Fall Time (for BCY70 and BCY72 only)	$\begin{aligned} & I_{\mathrm{C}}=-10 \mathrm{~mA} \quad V_{E E}=3 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{B} 1}=-\mathrm{I}_{\mathrm{B} 2}=-1 \mathrm{~mA} \end{aligned}$		50	80	ns
ton	Turn-on Time (for BCY70 and BCY72 only)	$\begin{array}{ll} \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA} & V_{\mathrm{EE}}=3 \mathrm{~V} \\ \mathrm{I}_{\mathrm{A}_{1}}=-1 \mathrm{~mA} & \end{array}$		48	65	ns
taft	Turn-off Time (for BCY70 and BCY72 only)	$\begin{array}{ll} I_{\mathrm{C}}=-10 \mathrm{~mA} & \mathrm{~V}_{\mathrm{EE}}=3 \mathrm{~V} \\ \mathrm{I}_{\mathrm{B} 1}=-I_{\mathrm{B} 2}=-1 & \mathrm{~mA} \end{array}$		320	420	ns

* Pulsed : pulse duration $=300 \mu$ s, duty cycle $=1 \%$.

TEST CIRCUIT

Test Circuit for Switching Times.

[^0]: * Pulsed : pulse duration $\approx 300 \mu \mathrm{~s}$, duty cycle $=1 \%$.

