
DISCRETE SEMICONDUCTORS

Product specification Supersedes data of February 1994 1996 May 24

Product specification

BYM26 series

Fast soft-recovery controlled avalanche rectifiers

FEATURES

- · Glass passivated
- High maximum operating temperature
- Low leakage current
- · Excellent stability
- Guaranteed avalanche energy absorption capability
- Available in ammo-pack
- Also available with preformed leads for easy insertion.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{RRM}	repetitive peak reverse voltage				
	BYM26A		_	200	V
	BYM26B		-	400	V
	BYM26C		-	600	V
	BYM26D		-	800	V
	BYM26E		-	1000	V
	BYM26F		-	1200	V
	BYM26G		-	1400	V
V _R	continuous reverse voltage				
	BYM26A		-	200	V
	BYM26B		-	400	V
	BYM26C		-	600	V
	BYM26D		-	800	V
	BYM26E		-	1000	V
	BYM26F		-	1200	V
	BYM26G		-	1400	V
I _{F(AV)}	average forward current	T_{tp} = 55 °C; lead length = 10 mm;			
	BYM26A to E	see Figs 2 and 3;	-	2.30	А
	BYM26F and G	averaged over any 20 ms period; see also Figs 10 and 11	_	2.40	А
I _{F(AV)}	average forward current	T _{amb} = 65 °C; PCB mounting (see			
	BYM26A to E	Fig.19); see Figs 4 and 5;	-	1.05	A
	BYM26F and G	averaged over any 20 ms period; see also Figs 10 and 11	-	1.00	А

DESCRIPTION

Rugged glass SOD64 package, using a high temperature alloyed

construction. This package is hermetically sealed and fatigue free as coefficients of expansion of all used parts are matched.

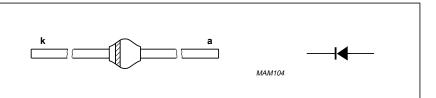


Fig.1 Simplified outline (SOD64) and symbol.

BYM26 series

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
I _{FRM}	repetitive peak forward current	T_{tp} = 55 °C; see Figs 6 and 7			
	BYM26A to E		_	19	А
	BYM26F and G		_	21	А
I _{FRM}	repetitive peak forward current	T_{amb} = 65 °C; see Figs 8 and 9			
	BYM26A to E		_	8.0	А
	BYM26F and G		-	8.5	А
I _{FSM}	non-repetitive peak forward current	t = 10 ms half sine wave; $T_j = T_{j max}$	_	45	А
		prior to surge; V _R = V _{RRMmax}			
E _{RSM}	non-repetitive peak reverse	L = 120 mH; $T_j = T_{j max}$ prior to surge;	_	10	mJ
	avalanche energy	inductive load switched off			
T _{stg}	storage temperature		-65	+175	°C
Tj	junction temperature	see Figs 12 and 13	-65	+175	°C

ELECTRICAL CHARACTERISTICS

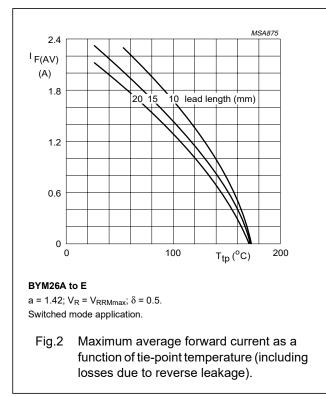
 T_j = 25 °C unless otherwise specified.

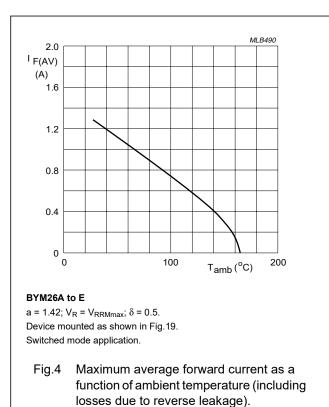
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _F	forward voltage	$I_F = 2 A; T_j = T_{j max};$				
	BYM26A to E	see Figs 14 and 15	-	_	1.34	V
	BYM26F and G		-	_	1.34	V
V _F	forward voltage	I _F = 2 A;				
	BYM26A to E	see Figs 14 and 15	_	_	2.65	V
	BYM26F and G		_	_	2.30	V
V _{(BR)R}	reverse avalanche breakdown voltage	I _R = 0.1 mA				
	BYM26A		300	_	-	V
	BYM26B		500	_	-	V
	BYM26C		700	_	-	V
	BYM26D		900	_	-	V
	BYM26E		1100	_	-	V
	BYM26F		1300	_	-	V
	BYM26G		1500	_	-	V
I _R	reverse current	V _R = V _{RRMmax} ; see Fig.16	-	-	10	μA
		V _R = V _{RRMmax} ; T _j = 165 °C; see Fig.16	-	_	150	μA
t _{rr}	reverse recovery time	when switched from				
	BYM26A to C	$I_F = 0.5 \text{ A to } I_R = 1 \text{ A};$	-	_	30	ns
	BYM26D and E	measured at I _R = 0.25 A; see Fig.20	-	_	75	ns
	BYM26F and G	300 T 19.20	-	_	150	ns

BYM26 series

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
C _d	diode capacitance	f = 1 MHz; V _R = 0 V;				
	BYM26A to C	see Figs 17 and 18	_	85	_	pF
	BYM26D and E		-	75	_	pF
	BYM26F and G		_	65	_	pF
dl _R dt	maximum slope of reverse recovery current	when switched from $I_F = 1 \text{ A to } V_R \ge 30 \text{ V and}$				
11	BYM26A to C	$dI_F/dt = -1 A/\mu s;$	_	_	7	A/µs
	BYM26D and E	see Fig.21	-	_	6	A/μs
	BYM26F and G		_	_	5	A/μs

THERMAL CHARACTERISTICS


SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-tp}	thermal resistance from junction to tie-point	lead length = 10 mm	25	K/W
R _{th j-a}	thermal resistance from junction to ambient	note 1	75	K/W


Note

1. Device mounted on an epoxy-glass printed-circuit board, 1.5 mm thick; thickness of Cu-layer ≥40 μm, see Fig.19. For more information please refer to the *"General Part of associated Handbook"*.

BYM26 series

GRAPHICAL DATA

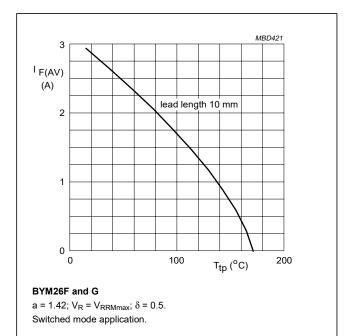


Fig.3 Maximum average forward current as a function of tie-point temperature (including losses due to reverse leakage).

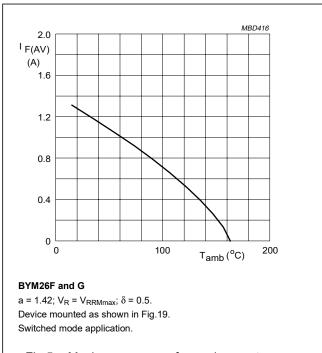


Fig.5 Maximum average forward current as a function of ambient temperature (including losses due to reverse leakage).

BYM26 series

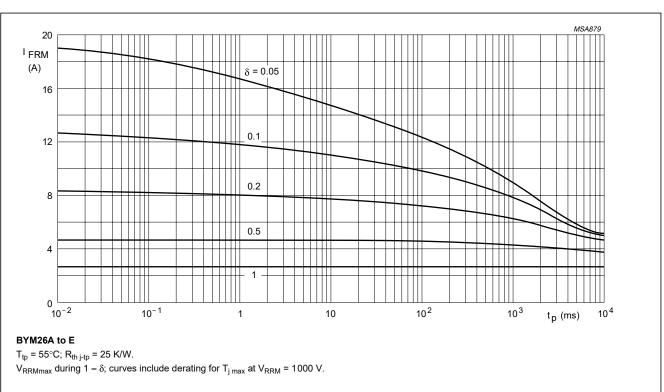


Fig.6 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.

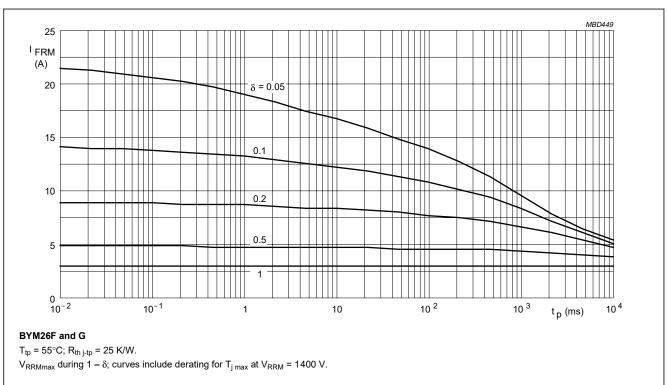


Fig.7 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.

BYM26 series

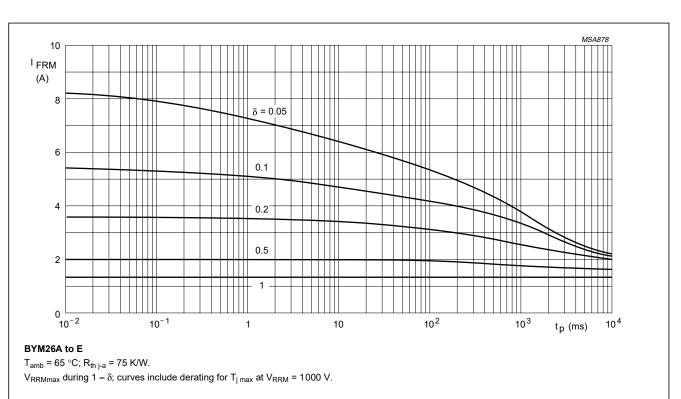


Fig.8 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.

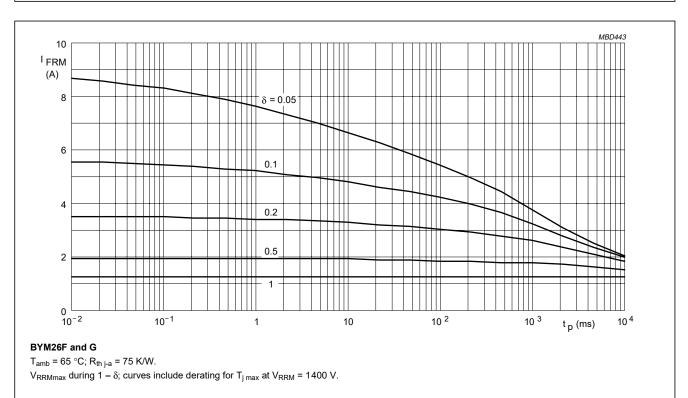
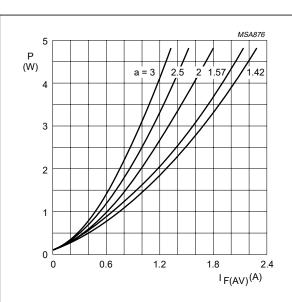
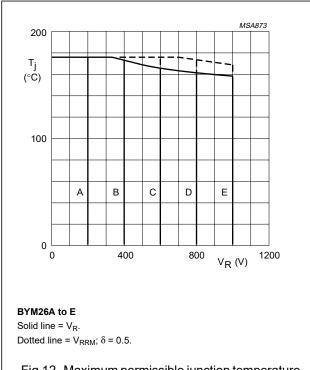
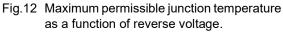
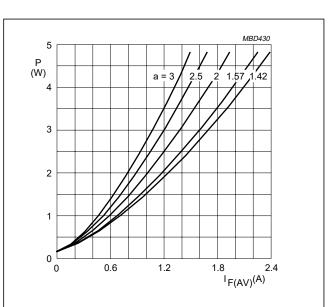



Fig.9 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.

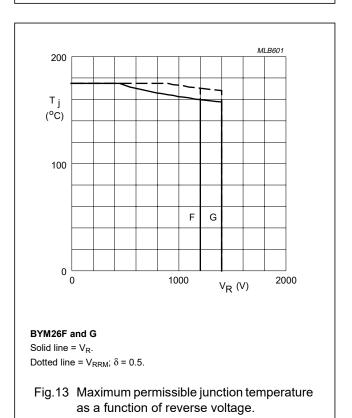

BYM26 series

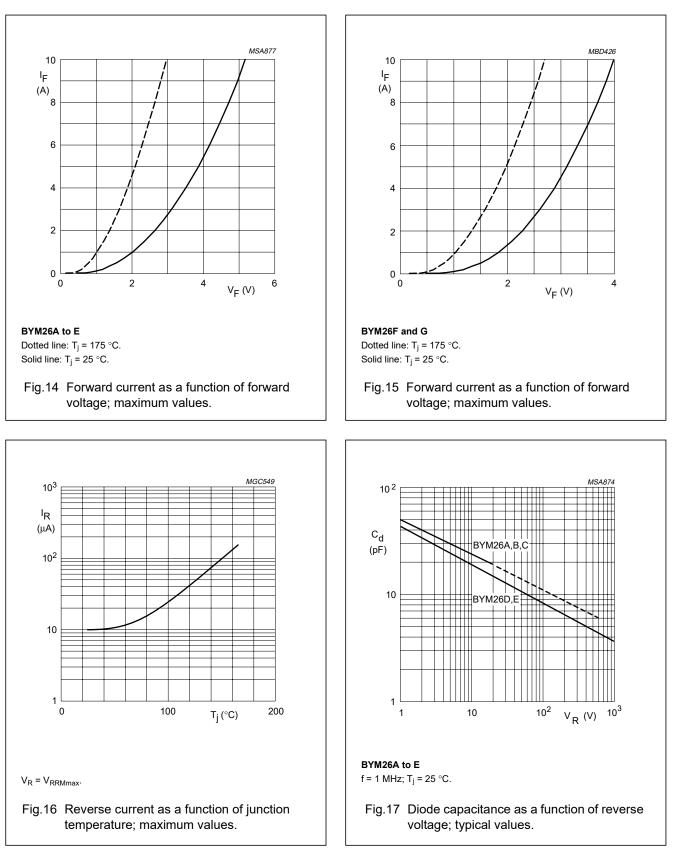



BYM26A to E

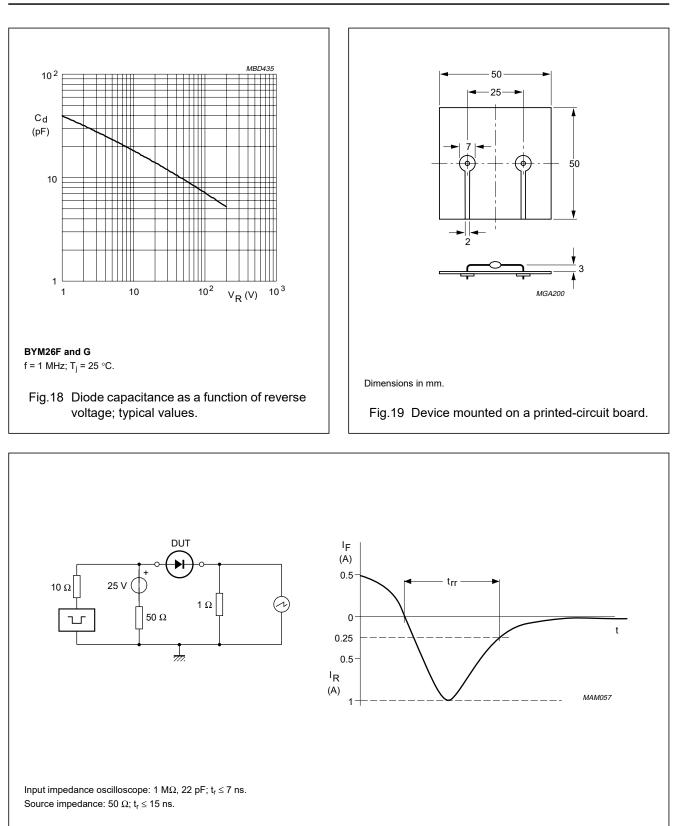
a = $I_{F(RMS)}/I_{F(AV)}$; $V_R = V_{RRMmax}$; $\delta = 0.5$.

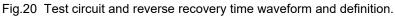
Fig.10 Maximum steady state power dissipation (forward plus leakage current losses, excluding switching losses) as a function of average forward current.



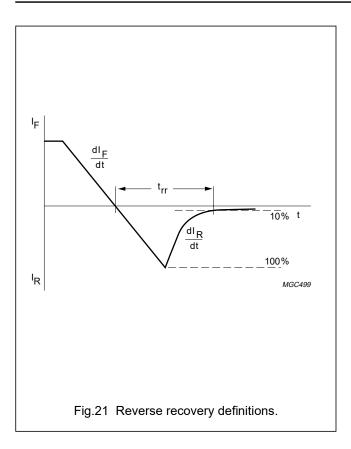

BYM26F and G

a = $I_{F(RMS)}/I_{F(AV)}$; $V_R = V_{RRMmax}$; $\delta = 0.5$.

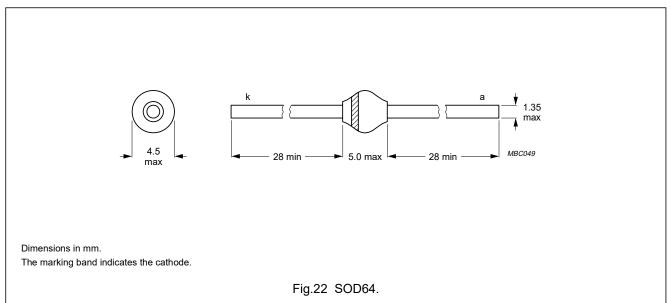

Fig.11 Maximum steady state power dissipation (forward plus leakage current losses, excluding switching losses) as a function of average forward current.



BYM26 series



BYM26 series



BYM26 series

BYM26 series

PACKAGE OUTLINE

DEFINITIONS

Data Sheet Status			
Objective specification	This data sheet contains target or goal specifications for product development.		
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.		
Product specification	This data sheet contains final product specifications.		
Limiting values			
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.			
Application information			
Where application information is given, it is advisory and does not form part of the specification.			

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.