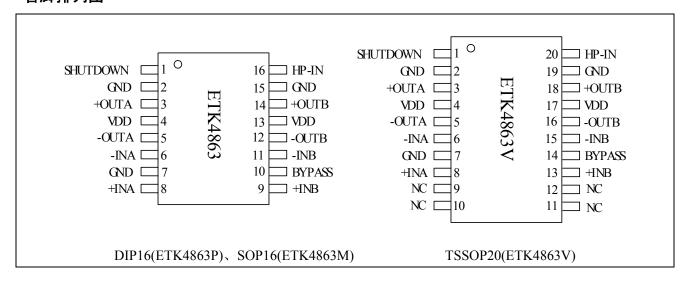
立体耳机音频功放 IC

概述

ETK4863是一个双桥式音频功放IC。在5V工作电压下,负载(4Ω)上的平均功率为2.2W或负载(3Ω)上的平均功率为2.5W,且失真度不超过1.0%。另外,在运行立体耳机模式时,耳机输入端口允许放大器工作在单端模式下。


ETK4863是专为大功率、高保真的应用场合所设计的音频功放IC。所需外围元件少且在2.0V~5.5V的输入电压下均可工作。

功能特点

- 立体耳机功放模式
- 稳定的增益输出
- 热关断保护电路
- 封装形式: DIP16(ETK4863P)、SOP16(ETK4863M)、TSSOP20(ETK4863V)

注: ETK4863M是采用SOP16宽体封装。

管脚排列图

应用:

● 多媒体监控器 **应用范围** ● 手提设备,台式电脑 汽车音响、功放。 ● 使携式电视

管脚说明

管脚序号	名 称	类 型	说 明
1	SHUTDOWN	I	关断端口。
2, 7, 15	GND	POWER	接地端。
3	+OUTA	О	正向输出端 A。
4、13	VDD	POWER	电源端。
5	-OUTA	О	反向输出端 A 。
6	-INA	I	反向输入端 A。
8	+INA	I	正向输入端 A。
9	+INB	I	正向输入端 B。
10	BYPASS	I	电压基准端。
11	-INB	I	反向输入端 B。
12	-OUTB	О	反向输出端 B。
14	+OUTB	О	正向输出端 B。
16	HP-IN	I	耳机/立体模式选择。

注:

I: 输入;

O: 输出;

POWER: 电源

功能说明

桥路设置

ETK4863由2个运放电路组成,形成双通道(通道A和通道B)立体放大器。针对A的说明,B原理相同。 外部电阻 R_F 和 R_I 设置构成AMP1A的闭环增益,而2个内置的20k Ω 电阻形成AMP2A为-1的增益。ETK4863 通过连接2个放大器输出端口: -OUTA和+OUTA,来驱动负载。

AMP1A的输出同时供AMP2A的输入,而且两个运放产生的信号幅度相同,相位相反。利用相位的不同,在-OUTA和+OUTA和桥式模式下放置一个负载,因此ETK4863增益如下:

$$A_{VD} = 2 \times (Rf/Ri)$$

为驱动负载,运放设置成桥接方式。桥接方式不同于一些常见的运放电路把负载的一边接到地,在同等条件下能使负载产生4倍的输出功率。

功耗

使用桥接的运放电路,负载上产生的功耗也比较大,因此在规定电压的条件下,负载功耗如下:

$$P_{\rm DMAX} = \left(V_{\rm DD}\right)^2 / \left(2\pi^2 R_{\rm L}\right) Single\text{-Ended}$$

$$P_{\text{DMAX}} = 4 \times \left(V_{\text{DD}}\right)^2 / \left(2\pi^2 R_L\right) Bridge\text{-mode}$$

因此ETK4863桥式驱动的其中一个通道,在5V输入,4 Ω 负载情况下,输出最大功耗为1.27W/2.54W(立体声模式)。

ETK4863的总功耗是上式计算的一倍,但是此算法得出的结果不应大于下式:

$$P_{DMAX} = (T_{JMAX} - T_{A})/\theta_{JA}$$

注: TSSOP封装θ_{JA}=41°C/W

基准电压

电压基准端的外接电容应尽可能的靠近ETK4863,0.1μF的电容提高了内部偏置电压的稳定性并且减少了PSRR的影响。可以通过加大BYPASS端的对地电容值来改善PSRR。C_B值的大小取决于对PSRR的要求。

关断功能

为了较少功耗的影响,ETK4863的关断端可以关闭内部的偏置电路。当关断端出现高电平时就关闭运放。关断端口电压为VDD,ETK4863的工作电流降低至空闲模式时的电流大小。关断端的电压值若略小于VDD,则ETK4863不工作,并且这时的电流值明显大于典型的空闲模式时的0.7μA。在一般情况下,关断端应置于一个稳定的电压值以免进入错误的状态。

在很多应用场合,关断端口的电平转换都是由处理器来完成的,但是也可以用单向闸刀开关来实现。 外接一个上拉电阻,合上开关,因为关断端连接到地运放即开始工作。打开开关,外接上拉电阻的关系将 使ETK4863不工作。这样就能保证ETK4863不在错误的状态下工作。

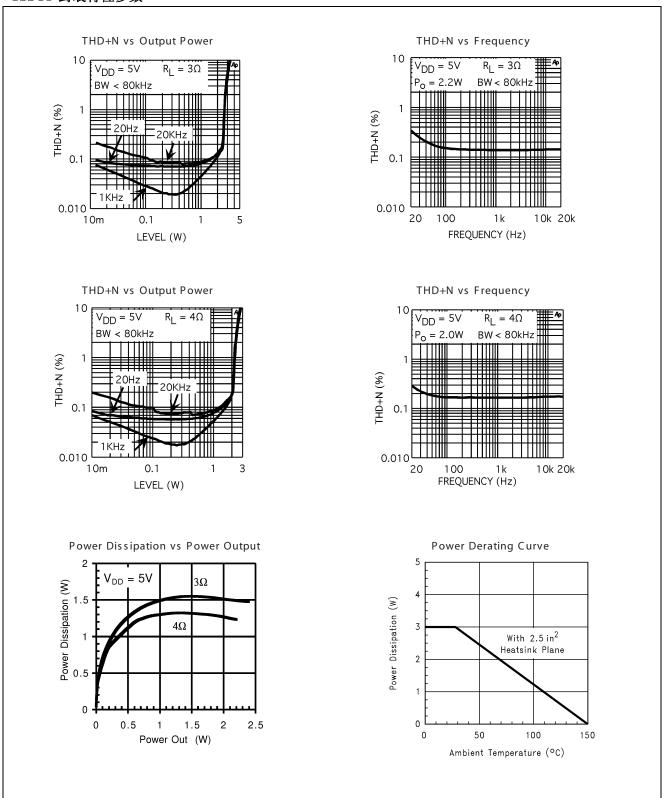
极限参数(Ta=25℃)

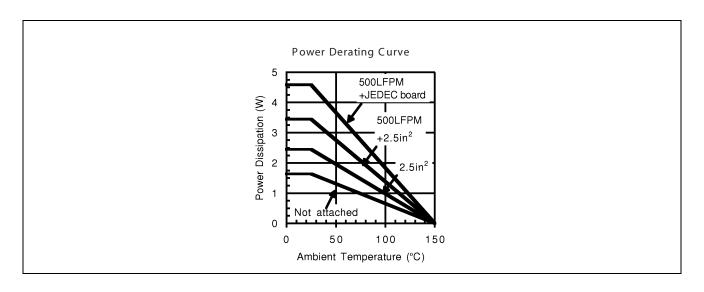
特性	符号	范 围	单 位
工作电压	$V_{ m DD}$	6.0	V
输入电压	$V_{\rm IN}$	$-0.3 \sim V_{DD} + 0.3$	V
储存温度	T_{STG}	- 65∼+150	$^{\circ}$
环境温度	T_{A}	- 40∼+85	$^{\circ}\!$
节点温度	T_{J}	150	$^{\circ}$

电参数(V_{DD} =5V, T_A=25℃)

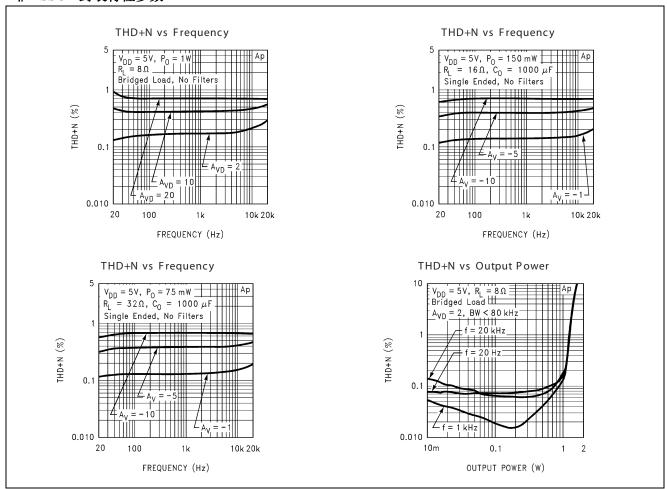
适用于全部 IC

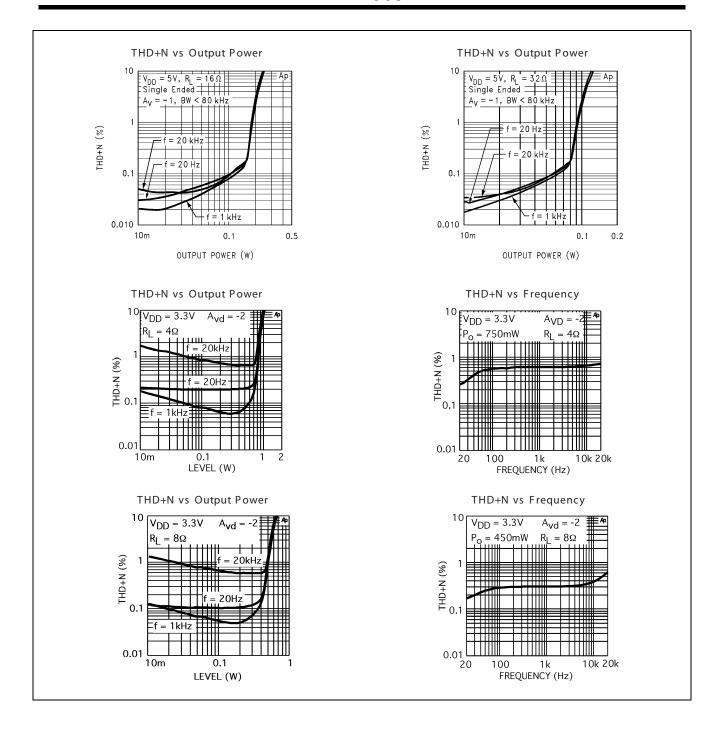
名称	符号	最小值	典型值	最大值	单位	测试条件	
工作电压	V_{DD}	2.0		5.5	V		
静态电流	I_{DD}	6.0	11.5	20	mA	V_{IN} =0V, I_{O} =0mA, HP-IN=0V	
那 念电机			5.8			V_{IN} =0V, I_{O} =0mA, HP-IN=4V	
关断电流	I_{SD}		0.7	2	μΑ	V _{DD} 连接到关断端口	
耳机输入高电平	V_{IH}	4			V		
耳机输入低电平	V_{IL}	0.8			V		

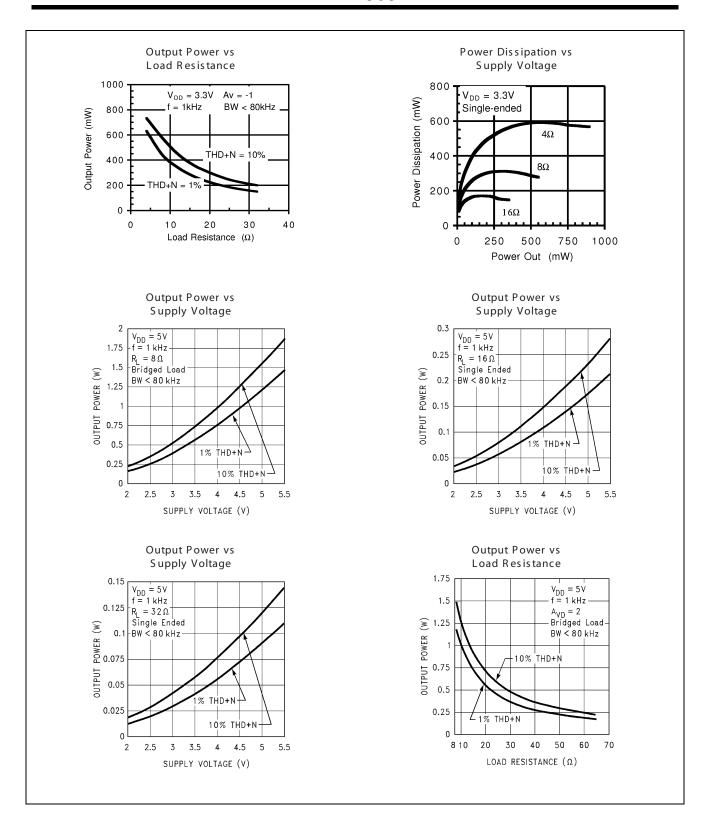

桥式工作模式

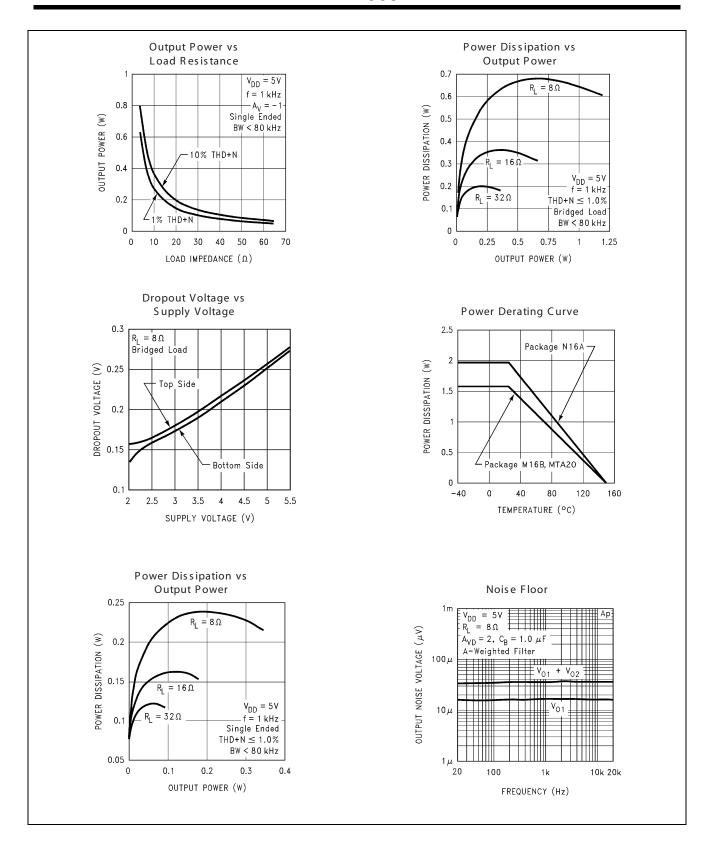

名称	符号	最小值	典型值	最大值	单位	测试条件		
输出失调	V_{OS}		5.0	50	mV	$V_{IN}=0V$		
输出功率	Po		2.5		W	THD+N=1% f=1kHz		$R_L=3\Omega$
			2.2					$R_L=4\Omega$
			1.1	1.0				$R_L=8\Omega$
			3.2			THD+N=10% f=1kHz		$R_L=3\Omega$
			2.7					$R_L = 4\Omega$
			1.5					$R_L=8\Omega$
			0.34			THD+N=1%, f=1kHz $R_L=32$		$R_L=32\Omega$
总谐波失真+噪音	THD+N		0.3		%	20Hz≤f≤20kHz	$R_L=49$	Ω, Po=2W
			0.3			$A_{VD}=2$	$R_L=8\Omega$, $P_0=$	
电源抑制比	PSRR		67		dB	V_{DD} =5V, V_{RIPPLE} =200m V_{RMS} , R_L =8 Ω , C_B =1.0 μ F		
通道分离度	X_{TALK}		90		dB	$f=1kHz$, $C_B=1.0\mu F$		
信噪比	SNR		98		dB	$V_{DD} = 5V$, $P_0 = 1.1W$, $R_L = 8\Omega$		

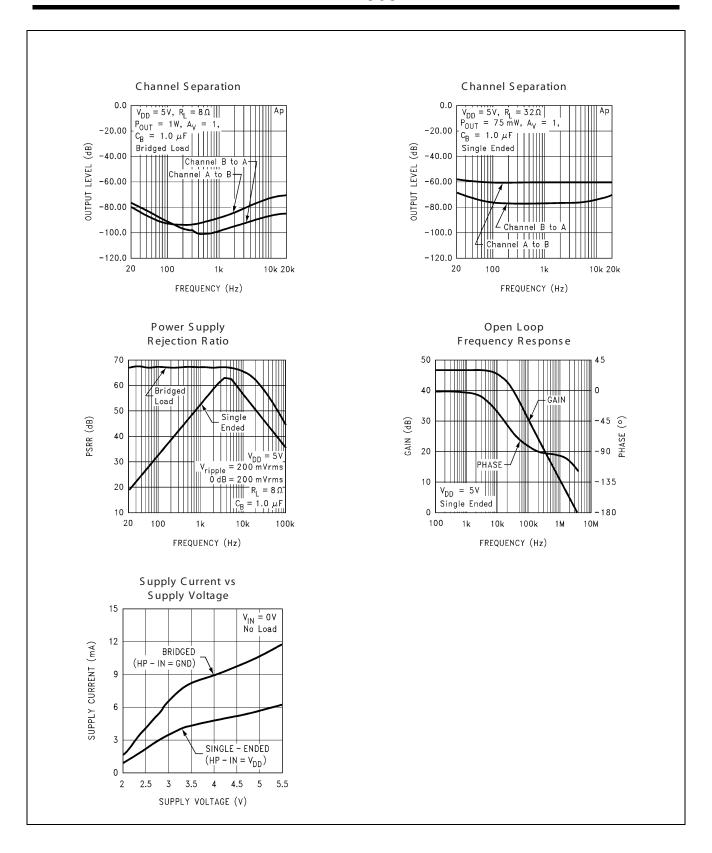
单端工作模式

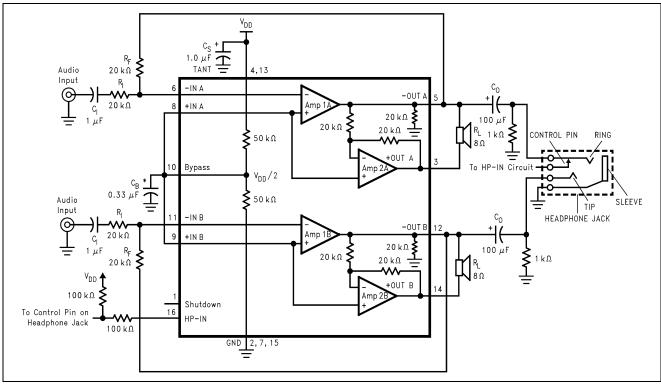

名称	符号	最小值	典型值	最大值	单位	测试条件
输出偏压	V_{OS}		5.0	50	mV	$ m V_{IN} = 0V$
		75	85			THD+N=0.5%, f=1kHz, R_L =32 Ω
输出功率	Po		340		mW	THD+N=1%, f=1kHz, R_L =8 Ω
			440			THD+N=10%, f=1kHz, R_L =8 Ω
总谐波失真+噪音	THD+N		0.2		%	$A_V = -1$, $P_0 = 75 \text{m W}$, $R_L = 32\Omega$, $20 \text{Hz} \le f \le 20 \text{kHz}$,
电源抑制比	PSRR		52		dB	$C_B\!=\!1.0\mu F$, $V_{RIPPLE}\!=\!200m~V_{RMS}$, $f\!=\!1kHz$
通道分离度	X_{TALK}		60		dB	$f=1kHz$, $C_B=1.0\mu F$
信噪比	SNR		95		dB	$V_{DD} = 5V$, $P_0 = 340 \text{mW}$, $R_L = 8\Omega$

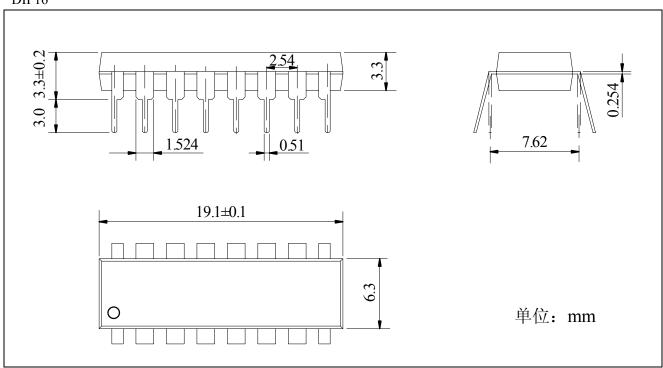

TSSOP 封装特性参数

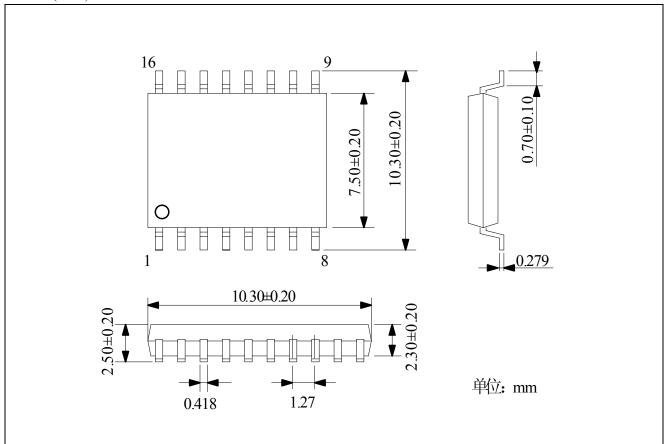




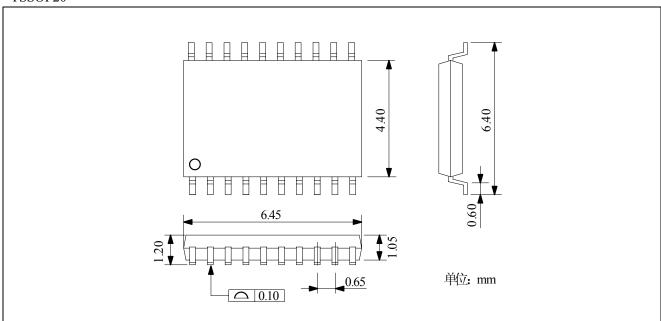

非 TSSOP 封装特性参数




参考应用线路图


^{*:} 此电路仅供参考。

封装尺寸图


DIP16

SOP16(宽体)

TSSOP20

