INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4053B MSI

Triple 2-channel analogue multiplexer/demultiplexer

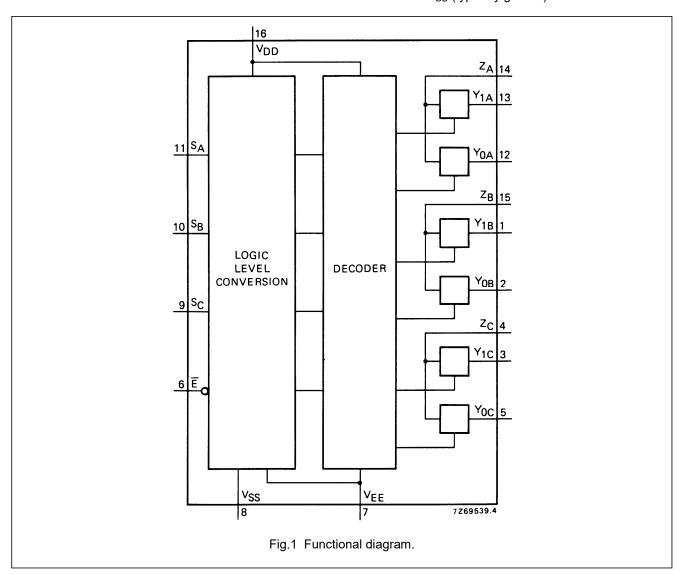
Product specification
File under Integrated Circuits, IC04

January 1995

Triple 2-channel analogue multiplexer/demultiplexer

HEF4053B MSI

DESCRIPTION


The HEF4053B is a triple 2-channel analogue multiplexer/demultiplexer with a common enable input $(\overline{E}).$ Each multiplexer/demultiplexer has two independent inputs/outputs $(Y_0$ and $Y_1),$ a common input/output (Z), and select inputs $(S_n).$ Each also contains two-bidirectional analogue switches, each with one side connected to an independent input/output $(Y_0$ and $Y_1)$ and the other side connected to a common input/output (Z).

With \overline{E} LOW, one of the two switches is selected (low impedance ON-state) by S_n . With \overline{E} HIGH, all switches are in the high impedance OFF-state, independent of S_A to S_C .

 V_{DD} and V_{SS} are the supply voltage connections for the digital control inputs (S_A to S_C and $\overline{E}).$

The V_{DD} to V_{SS} range is 3 to 15 V. The analogue inputs/outputs (Y_0 , Y_1 and Z) can swing between V_{DD} as a positive limit and V_{EE} as a negative limit. V_{DD} – V_{EE} may not exceed 15 V.

For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to V_{SS} (typically ground).

FAMILY DATA, I_{DD} LIMITS category MSI

See Family Specifications

Triple 2-channel analogue multiplexer/demultiplexer

HEF4053B MSI

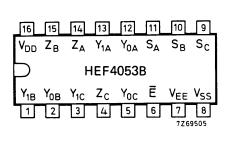


Fig.2 Pinning diagram.

HEF4053BP(N): 16-lead DIL; plastic

(SOT38-1)

HEF4053BD(F): 16-lead DIL; ceramic (cerdip)

(SOT74)

HEF4053BT(D): 16-lead SO; plastic

(SOT109-1)

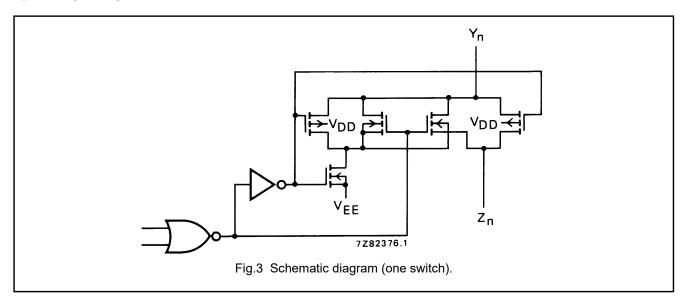
(): Package Designator North America

PINNING

 Y_{0A} to Y_{0C} independent inputs/outputs Y_{1A} to Y_{1C} independent inputs/outputs

S_A to S_C select inputs

 $\overline{\mathsf{E}}$ enable input (active LOW) Z_A to Z_C common inputs/outputs

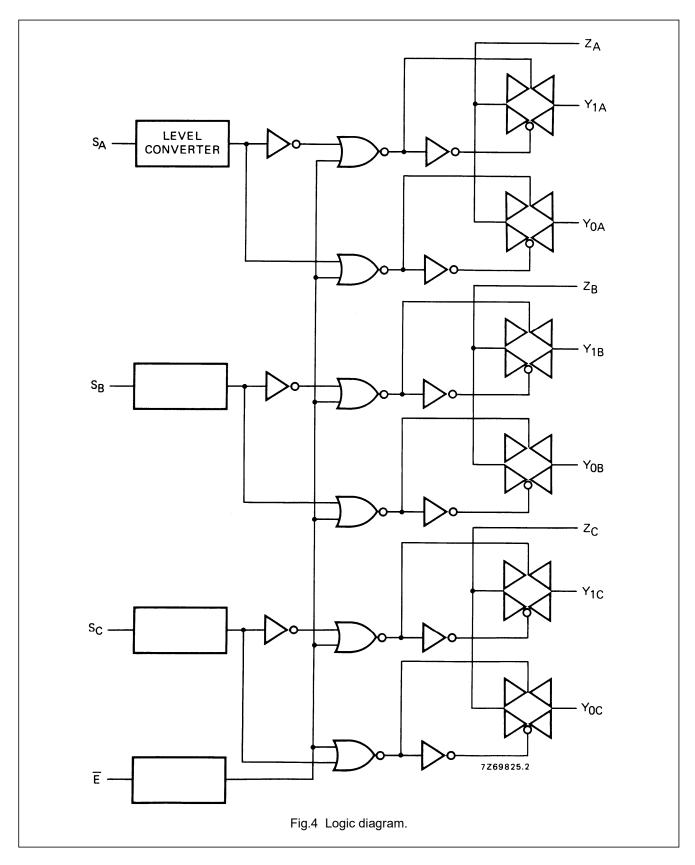

FUNCTION TABLE

INPUTS		CHANNEL	
Ē	Sn	ON	
L	L	Y _{0n} –Z _n	
L	Н	$Y_{1n}-Z_n$	
Н	Х	none	

Notes

H = HIGH state (the more positive voltage)
 L = LOW state (the less positive voltage)

X = state is immaterial


RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage (with reference to V_{DD}) V_{EE} -18 to +0.5 V

Note

To avoid drawing V_{DD} current out of terminal Z, when switch current flows into terminals Y, the voltage drop across
the bidirectional switch must not exceed 0,4 V. If the switch current flows into terminal Z, no V_{DD} current will flow out
of terminals Y, in this case there is no limit for the voltage drop across the switch, but the voltages at Y and Z may
not exceed V_{DD} or V_{EE}.

Triple 2-channel analogue multiplexer/demultiplexer

HEF4053B MSI

DC CHARACTERISTICS

 T_{amb} = 25 $^{\circ}C$

	V _{DD} -V _{EE}	SYMBOL	TYP.	MAX.		CONDITIONS
ON resistance	5	R _{ON}	350	2500	Ω	V 04 V V
	10		80	245	Ω	V _{is} = 0 to V _{DD} –V _{EE} see Fig.6
	15		60	175	Ω	500 i ig.o
	5		115	340	Ω	
ON resistance	10	R _{ON}	50	160	Ω	V _{is} = 0 see Fig.6
	15		40	115	Ω	300 Tig.0
	5		120	365	Ω	V V V
ON resistance	10	R _{ON}	65	200	Ω	V _{is} = V _{DD} –V _{EE} see Fig.6
	15		50	155	Ω	300 Tig.0
'Δ' ON resistance	5		25	_	Ω	V 04 V V
between any two	10	ΔR_{ON}	10	_	Ω	V _{is} = 0 to V _{DD} –V _{EE} see Fig.6
channels	15		5	_	Ω	300 Tig.0
OFF-state leakage	5		_	_	nA	
current, all	10	I _{OZZ}	-	_	nA	E at V _{DD}
channels OFF	15		_	1000	nA	
OFF-state leakage	5		_	_	nA	
current, any	10	I _{OZY}	_	_	nA	E at V _{SS}
channel	15		<u> </u>	200	nA	

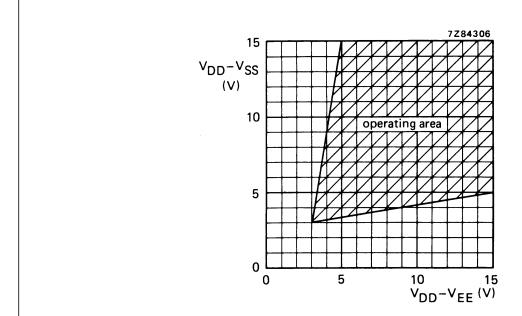
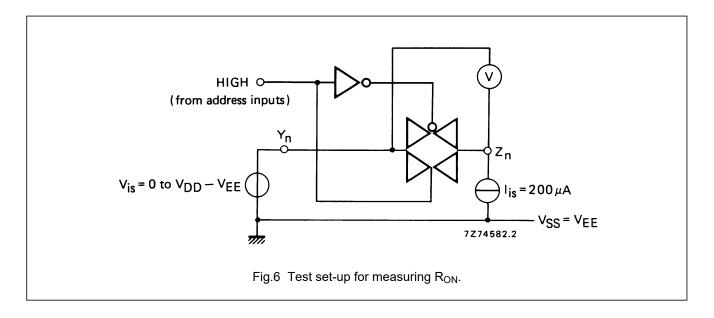
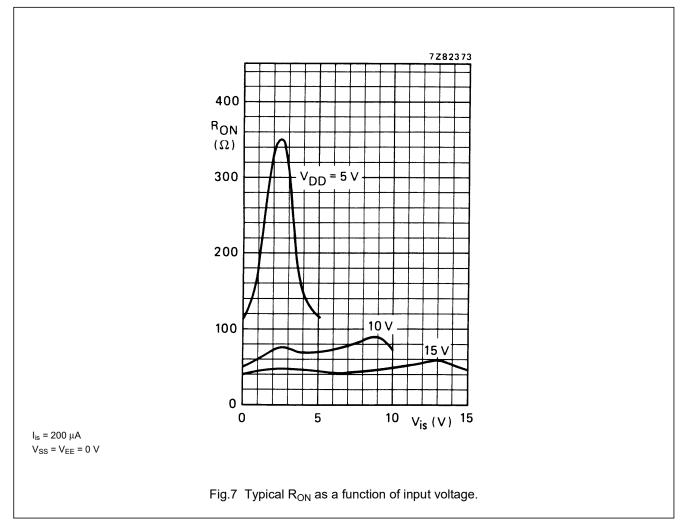




Fig.5 Operating area as a function of the supply voltages.

Triple 2-channel analogue multiplexer/demultiplexer

HEF4053B MSI

Triple 2-channel analogue multiplexer/demultiplexer

HEF4053B MSI

AC CHARACTERISTICS

 V_{EE} = V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	$2 500 f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	11 500 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	29 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\Sigma(f_oC_L)$ = sum of outputs
			V _{DD} = supply voltage (V)

AC CHARACTERISTICS

 V_{EE} = V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD}	SYMBOL	TYP.	MAX.		
Propagation delays						
$V_{is} \rightarrow V_{os}$	5		10	20	ns	
HIGH to LOW	10	t _{PHL}	5	10	ns	note 1
	15		5	10	ns	
	5		15	30	ns	
LOW to HIGH	10	t _{PLH}	5	10	ns	note 1
	15		5	10	ns	
$S_n \to V_{os}$	5		200	400	ns	
HIGH to LOW	10	t _{PHL}	85	170	ns	note 2
	15		65	130	ns	
	5		275	555	ns	
LOW to HIGH	10	t _{PLH}	100	200	ns	note 2
	15		65	130	ns	
Output disable times						
$\overline{E} \rightarrow V_{os}$	5		200	400	ns	
HIGH	10	t _{PHZ}	115	230	ns	note 3
	15		110	220	ns	
	5		200	400	ns	
LOW	10	t _{PLZ}	120	245	ns	note 3
	15		110	215	ns	
Output enable times						
$\overline{E} \rightarrow V_{os}$	5		260	525	ns	
HIGH	10	t _{PZH}	95	190	ns	note 3
	15		65	130	ns	
	5		280	565	ns	
LOW	10	t _{PZL}	105	205	ns	note 3
	15		70	140	ns	

Triple 2-channel analogue multiplexer/demultiplexer

HEF4053B MSI

	V _{DD}	SYMBOL	TYP.	MAX.	
Distortion, sine-wave	5		0,25	%	
response	10		0,04	%	note 4
	15		0,04	%	
Crosstalk between	5		_	MHz	
any two channels	10		1	MHz	note 5
	15		_	MHz	
Crosstalk; enable	5		_	mV	
or address input	10		50	mV	note 6
to output	15		_	mV	
OFF-state	5		_	MHz	
feed-through	10		1	MHz	note 7
	15		_	MHz	
ON-state frequency	5		13	MHz	
response	10		40	MHz	note 8
	15		70	MHz	

Notes

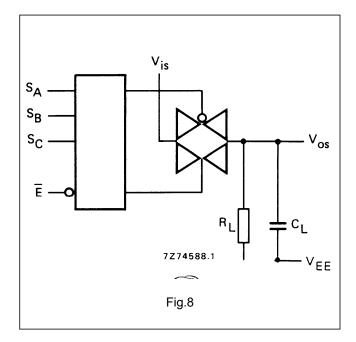
Vis is the input voltage at a Y or Z terminal, whichever is assigned as input.

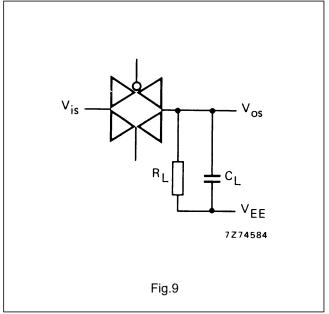
V_{os} is the output voltage at a Y or Z terminal, whichever is assigned as output.

- 1. $R_L = 10 \text{ k}\Omega$ to V_{EE} ; $C_L = 50 \text{ pF}$ to V_{EE} ; $\overline{E} = V_{SS}$; $V_{is} = V_{DD}$ (square-wave); see Fig.8.
- R_L = 10 kΩ; C_L = 50 pF to V_{EE}; E = V_{SS}; S_n = V_{DD} (square-wave); V_{is} = V_{DD} and R_L to V_{EE} for t_{PLH}; V_{is} = V_{EE} and R_L to V_{DD} for t_{PHL}; see Fig.8.
- 3. $R_L = 10 \text{ k}\Omega$; $C_L = 50 \text{ pF to } V_{EE}$; $\overline{E} = V_{DD}$ (square-wave);
 - $V_{is} = V_{DD}$ and R_L to V_{EE} for t_{PHZ} and t_{PZH} ;
 - V_{is} = V_{EE} and R_L to V_{DD} for t_{PLZ} and t_{PZL} ; see Fig.8.
- 4. R_L = 10 $k\Omega$; C_L = 15 pF; channel ON; V_{is} = $\frac{1}{2}$ $V_{DD (p-p)}$ (sine-wave, symmetrical about $\frac{1}{2}$ V_{DD}); f_{is} = 1 kHz; see Fig.9.
- 5. $R_L = 1 \text{ k}\Omega$; $V_{is} = \frac{1}{2} V_{DD (p-p)}$ (sine-wave, symmetrical about $\frac{1}{2} V_{DD}$);

20
$$\log \frac{V_{os}}{V_{is}} = -50 \text{ dB}$$
; see Fig. 10.

- 6. $R_L = 10 \text{ k}\Omega$ to V_{EE} ; $C_L = 15 \text{ pF}$ to V_{EE} ; \overline{E} or $S_n = V_{DD}$ (square-wave); crosstalk is V_{os} (peak value); see Fig.8.
- 7. $R_L = 1 \text{ k}\Omega$; $C_L = 5 \text{ pF}$; channel OFF; $V_{is} = \frac{1}{2} V_{DD (p-p)}$ (sine-wave, symmetrical about $\frac{1}{2} V_{DD}$);


20 log
$$\frac{V_{os}}{V_{is}} = -50$$
 dB; see Fig. 9.


8. $R_L = 1 \text{ k}\Omega$; $C_L = 5 \text{ pF}$; channel ON; $V_{is} = \frac{1}{2} V_{DD \text{ (p-p)}}$ (sine-wave, symmetrical about $\frac{1}{2} V_{DD}$);


20 log
$$\frac{V_{os}}{V_{in}}$$
 = -3 dB; see Fig. 9.

Triple 2-channel analogue multiplexer/demultiplexer

HEF4053B MSI

APPLICATION INFORMATION

Some examples of applications for the HEF4053B are:

- Analogue multiplexing and demultiplexing.
- Digital multiplexing and demultiplexing.
- Signal gating.

NOTE

If break before make is needed, then it is necessary to use the enable input.