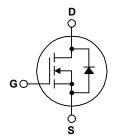


ON Semiconductor®

IRF644B

N-Channel BFET MOSFET 250 V, 14 A, 280 mΩ


Description

These N-Channel enhancement mode power field effect transistors are produced using ON Semiconductor's proprietary, planar, DMOS technology. This advanced technology has been especially tailored to minimize onprovide superior resistance, switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switching DC/DC converters and switch mode power supplies.

Features

- 14 A, 250 V, $R_{DS(on)}$ = 280 m Ω @ V_{GS} = 10 V
- Low gate charge (Typ. 47 nC)
- Low Crss (Typ. 30 pF)
- · Fast Switching
- 100% Avalanche Tested
- · Improved dv/dt Capability

Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol	Parameter		IRF644B_FP001	Unit	
V _{DSS}	Drain-Source Voltage		250	V	
I _D	Drain Current - Continuous (T _C = 25°C)		14	Α	
	- Continuous (T _C = 100	8.9	Α		
I _{DM}	Drain Current - Pulsed	(Note 1)	56	Α	
V _{GSS}	Gate-Source Voltage		± 30	V	
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	480	mJ	
I _{AR}	Avalanche Current	(Note 1)	14	Α	
E _{AR}	Repetitive Avalanche Energy	(Note 1)	13.9	mJ	
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.8	V/ns	
P_{D}	Power Dissipation (T _C = 25°C)		139	W	
	- Derate Above 25°C		1.11	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C	
T _L	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds		300	°C	

Thermal Characteristics

Symbol	Parameter	IRF644B-FP001	Unit
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	0.9	°C/W
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink	0.5	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	62.5	°C/W

Package Marking and Ordering Information

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
IRF644B-FP001	IRF644B	TO-220	Tube	N/A	N/A	50 units

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Cha	aracteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	250			V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°	C	0.24		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 250 V, V _{GS} = 0 V			10	μΑ
		V _{DS} = 200 V, T _C = 125°C			100	μΑ
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -30 V, V _{DS} = 0 V			-100	nA
On Cha	aracteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0		4.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 7.0 A		0.22	0.28	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 40 V, I _D = 7.0 A		11.7		S
C _{iss}	Output Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz		150	195	pF
C _{rss}	Reverse Transfer Capacitance	f = 1.0 MHz		30	40	pF pF
0						•
	ing Characteristics			00	50	
t _{d(on)}	Turn-On Delay Time	V _{DD} = 125 V, I _D = 14 A,		20	50	ns
t _r	Turn-On Rise Time	$R_G = 25 \Omega$		115	240	ns
t _{d(off)}	Turn-Off Delay Time Turn-Off Fall Time	(Note	4)	150 95	310 200	ns
Q _g	Total Gate Charge			47	60	ns nC
Q _{gs}	Gate-Source Charge	$V_{DS} = 200 \text{ V}, I_D = 14 \text{ A},$		6.2		nC
Q _{gd}	Gate-Drain Charge	V _{GS} = 10 V		23		nC
∽gu	Cate Brain Gharge	,	<i>'</i>	20		110
Drain-S	Source Diode Characteristics a	nd Maximum Ratings				
Is	Maximum Continuous Drain-Source Diode Forward Current				14	Α
'5	Maximum Pulsed Drain-Source Diode Forward Current				56	Α
I _{SM}	Maximum Pulsed Drain-Source Diode F					
I _{SM}	Maximum Pulsed Drain-Source Diode F Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 14 A			1.5	V
				 240	1.5	V ns

Notes:1. Repetitive rating : pulse-width limited by maximum junction temperature. 2. L = 3.9 mH, I_{AS} = 14 A, V_{DD} = 50 V, R_{G} = 25 Ω_{c} , starting T_{J} = 25°C. 3. $I_{SD} \leq$ 14 A, di/dt \leq 300 A/µs, $V_{DD} \leq$ BV_{DSS}, starting T_{J} = 25°C. 4. Essentially independent of operating temperature.

Typical Characteristics

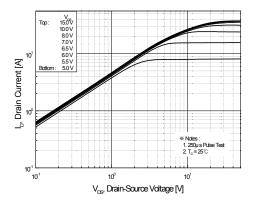


Figure 1. On-Region Characteristics

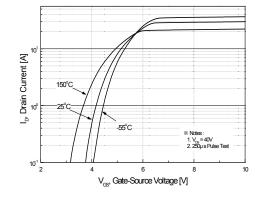


Figure 2. Transfer Characteristics

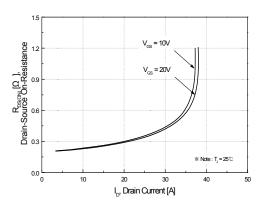


Figure 3. On-Resistance Variation vs Drain Current and Gate Voltage

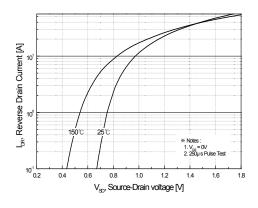


Figure 4. Body Diode Forward Voltage Variation with Source Current and Temperature

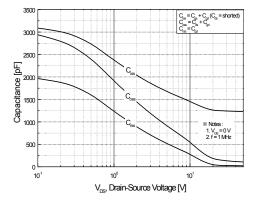


Figure 5. Capacitance Characteristics

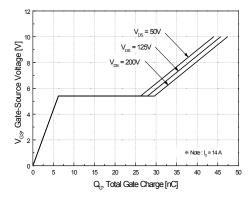


Figure 6. Gate Charge Characteristics

Typical Characteristics (Continued)

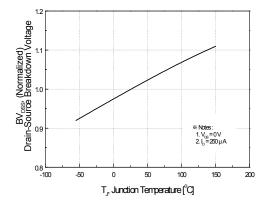


Figure 7. Breakdown Voltage Variation vs Temperature

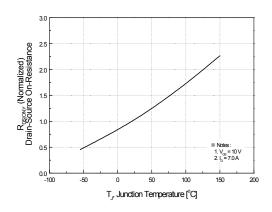


Figure 8. On-Resistance Variation vs Temperature

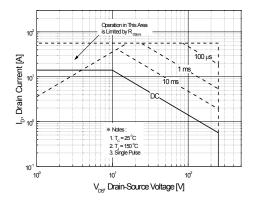


Figure 9. Maximum Safe Operating Area

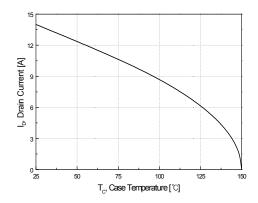


Figure 10. Maximum Drain Current vs Case Temperature

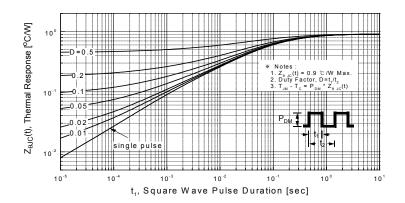


Figure 11. Transient Thermal Response Curve

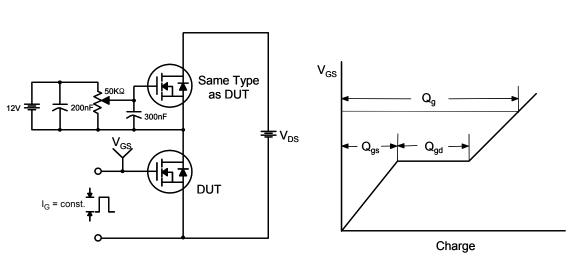


Figure 12. Gate Charge Test Circuit & Waveform

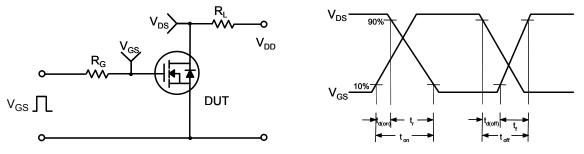


Figure 13. Resistive Switching Test Circuit & Waveforms

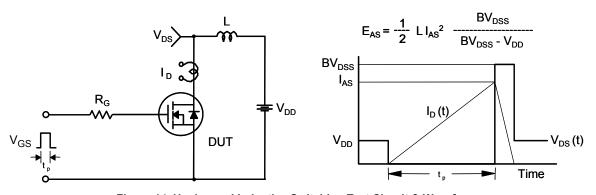


Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms

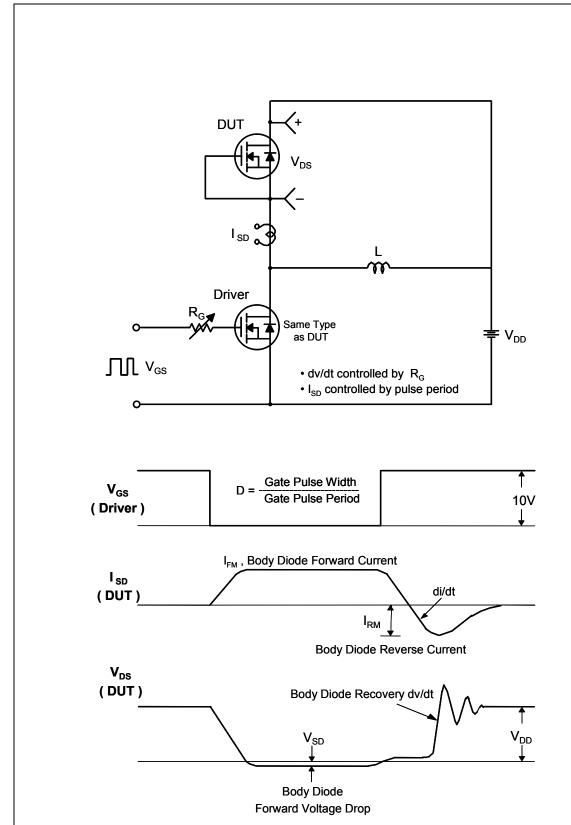
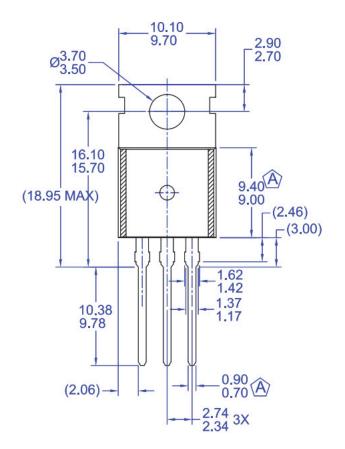
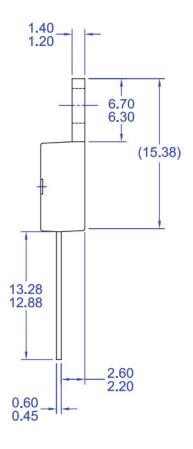
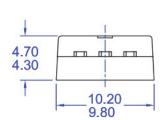





Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

Mechanical Dimensions

NOTES:

- (A) CONFORMS TO JEDEC TO-220 VARIATION AB EXCEPT WHERE NOTED
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- D) DRAWING FILE/REVISION: MKT-TO220Y03REV1

Figure 16. TO220, Molded, 3-Lead, Jedec Variation AB

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specif-ically the warranty therein, which covers ON Semiconductor products.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative