SN54180, SN74180 9-BIT ODD/EVEN PARITY GENERATORS/CHECKERS

DECEMBER 1972-REVISED MARCH 1988

FUNCTION TABLE

TONOTION TABLE									
INP	OUTF	PUTS							
Σ OF H's AT	EVEN	ODD	Σ	Σ					
A THRU H	EVEN	ODD	EVEN	ODD					
EVEN	Τ	L	Н	L					
ODD	Н	L	L	Н					
EVEN	L	н	L	Н					
ODD	L	Н	Н	L					
×	Н	H	L	٦					
Х	L	L	Н	Н					

H = high level, L = low level, X = irrelevant

description

These universal, monolithic, 9-bit (8 data bits plus 1 parity bit) parity generators/checkers, utilize familiar Series 54/74 TTL circuitry and feature odd/even outputs and control inputs to facilitate operation in either odd or even-parity applications. Depending on whether even or odd parity is being generated or checked, the even or odd inputs can be utilized as the parity or 9th-bit input. The word-length capability is easily expanded by cascading.

The SN54180/SN74180 are fully compatible with other TTL or DTL circuits. Input buffers are provided so that each data input represents only one normalized series 54/74 load. A full fan-out to 10 normalized series 54/74 loads is available from each of the outputs at a low logic level. A fan-out to 20 normalized loads is provided at a high logic level to facilitate the connection of unused inputs to used inputs. Typical power dissipation is 170 mW.

The SN54180 is characterized for operation over the full military temperature range of -55° C to 125° C; and the SN74180 is characterized for operation from 0° C to 70° C.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)		 7 V
Input voltage		 5.5 V
Operating free-air temperature range:	: SN54180 Circuits	 25°C
Storage temperature range		 50°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

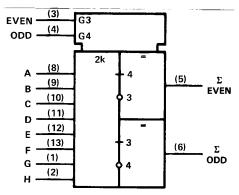
		SN5418	0	:	UNIT		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH			-800			-800	μА
Low-level output current, IOL			16			16	mA
Operating free-air temperature, TA	-55		125	0		70	°C

SN54180, SN74180 9-BIT ODD/EVEN PARITY GENERATORS/CHECKERS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CO	SN54180			SN74180				
I ANAMETER		TEST CONDITIONS†		MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT	
v_{IH}	High-level input voltage			2			2			V	
V_{IL}	Low-level input voltage						0.8			0.8	V
VIК	Input clamp voltage		V _{CC} = MIN,	I _I = -12 mA			-1.5	_		-1.5	V
V _{OH}	OH High-level output voltage		$V_{CC} = MIN,$ $V_{IL} = 0.8 V,$	V _{1H} = 2 V, I _{OH} = -800 μA	2.4	3,3		2.4	3,3		V
VOL	Low-level output voltage		$V_{CC} = MIN,$ $V_{IL} = 0.8 V,$	V _{IH} = 2 V, I _{OL} = 16 mA		0.2	0.4	E	0.2	0.4	٧
կ	Input current at maximum input voltage		V _{CC} = MAX,	V _I = 5.5 V		_	1		-	1	mA
Ιιн	High-level input current	Any data input	V _{CC} = MAX, V _I = 2.4 V				40			40	
'IH	- Ingil-level input current	Even or odd input					80			80	μΑ
IJĹ	Low-level input current	Any data input	V _{CC} = MAX,	V. = 0.4.V			-1.6			-1.6	
TIL LOW-level hipat current	Even or odd input	T VCC - MAA,	V - 0.4 V			-3.2			-3.2	mA	
los	OS Short-circuit output current §		V _{CC} = MAX		-20		-55	-18		-55	mA
lcc	ICC Supply current		V _{CC} = MAX,	See Note 2		34	49		34	56	mA

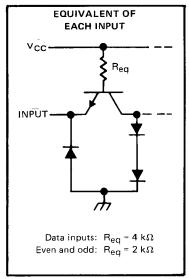
NOTE 2: I_{CC} is measured with even and odd inputs at 4.5 V, all other inputs and outputs open.

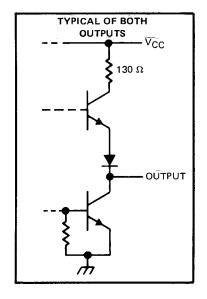

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. ‡ All typical values are at V_{CC} = 5 V, T_A = 25°C. § Not more than one output should be shorted at a time.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

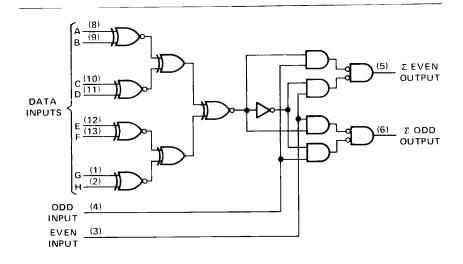
PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CONDI	MIN	TYP	MAX	UNIT	
^t PLH	Data	Σ Even				40	60	
tPHL	Data	2 LVen	C _L = 15 pF, Odd input grounded,	R _L = 400Ω , See Note 3		45	68	ns
tPLH	Data	Σ Odd				32	48	ns
tPHL	Data	2 Ouu				25	38	
^t PLH	Data	Σ Even		-		32	48	
^t PHL	Data	2 LVen	C _L = 15 pF, Even input grounded,	-		25	38	ns
^t PLH	Data	Σ Odd				40	60	ns
^t PHL	, Data	2 Ouu				45	68	
^t PLH	Even or Odd	Σ Even or Σ Odd	Cլ = 15 pF,	$R_L = 400 \Omega$,		13	20	
^t PHL	L Vell Of Odd	2 Even of 2 Odd	See Note 3			7	10	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.


logic symbol†



[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.



schematics of inputs and outputs

logic diagram (positive logic)

6-Feb-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN54180J	ACTIVE	CDIP	J	14	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	SN54180J	Samples
SNJ54180J	ACTIVE	CDIP	J	14	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	SNJ54180J	Samples
SNJ54180J	ACTIVE	CDIP	J	14	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	SNJ54180J	Samples
SNJ54180W	ACTIVE	CFP	W	14	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	SNJ54180W	Samples
SNJ54180W	ACTIVE	CFP	W	14	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	SNJ54180W	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

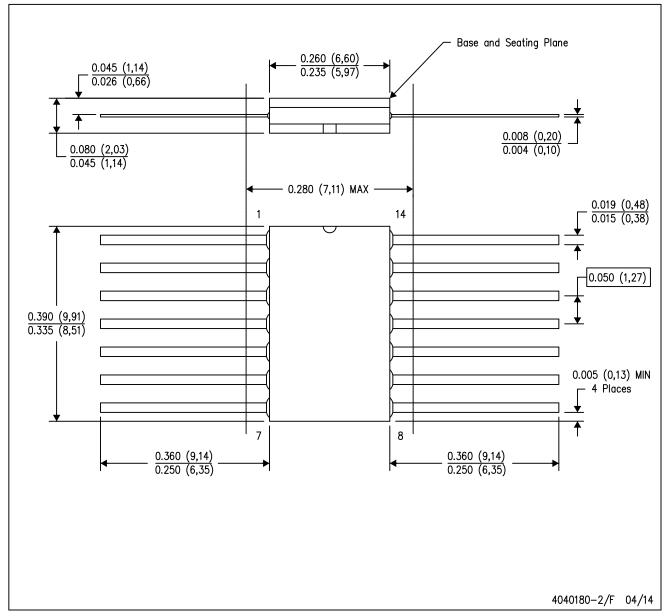
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

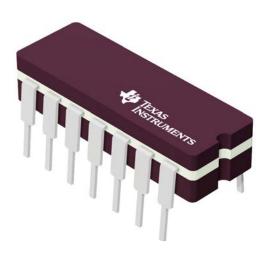

6-Feb-2020

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

W (R-GDFP-F14)

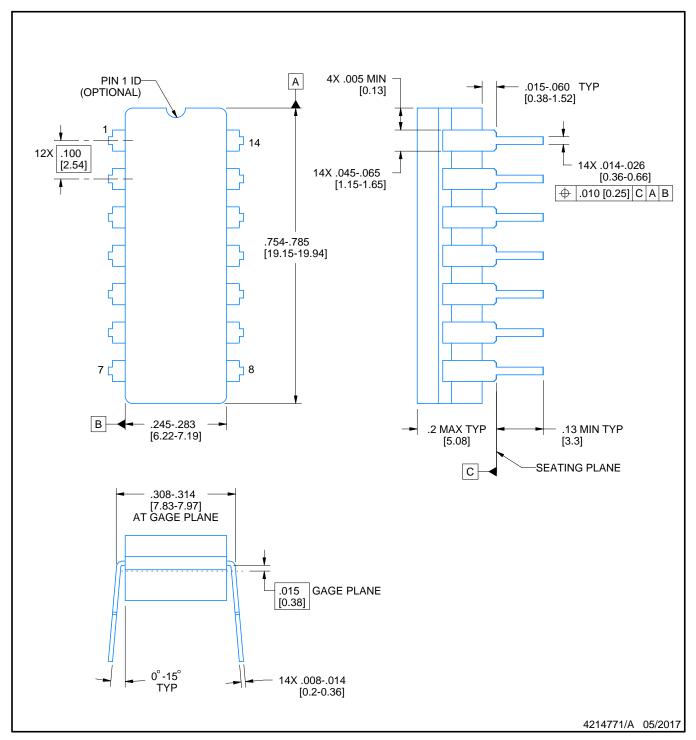
CERAMIC DUAL FLATPACK



NOTES:

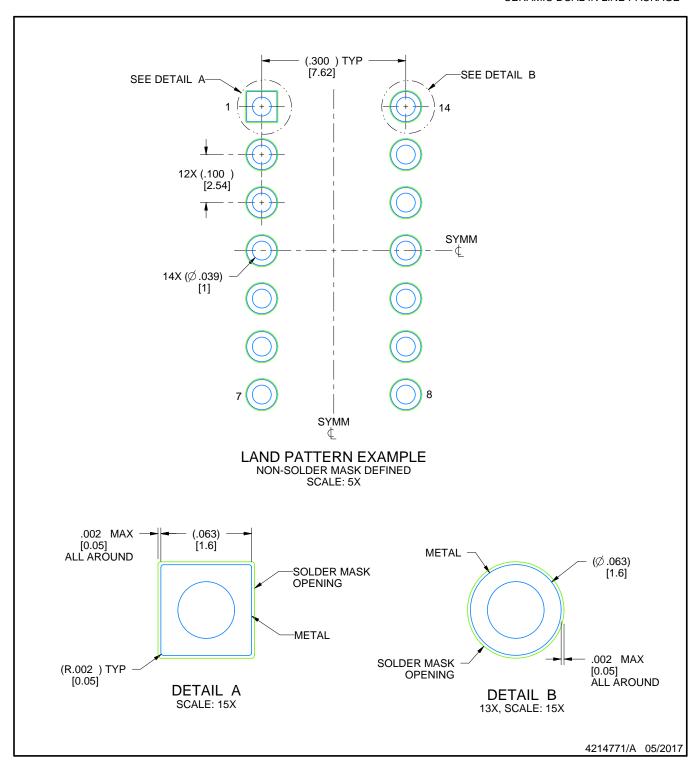
- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F14

CERAMIC DUAL IN LINE PACKAGE


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4040083-5/G

CERAMIC DUAL IN LINE PACKAGE



NOTES:

- 1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This package is hermitically sealed with a ceramic lid using glass frit.
- His package is remitted by sealed with a ceramic its using glass mit.
 Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
 Falls within MIL-STD-1835 and GDIP1-T14.

CERAMIC DUAL IN LINE PACKAGE

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated