

LM386 SNAS545C - MAY 2004 - REVISED MAY 2017

LM386 Low Voltage Audio Power Amplifier

Features

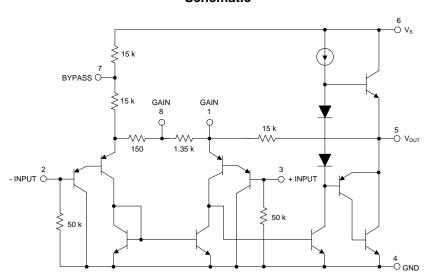
- **Battery Operation**
- Minimum External Parts
- Wide Supply Voltage Range: 4 V-12 V or 5 V-18 V
- Low Quiescent Current Drain: 4 mA
- Voltage Gains from 20 to 200
- **Ground-Referenced Input**
- Self-Centering Output Quiescent Voltage
- Low Distortion: 0.2% ($A_V = 20$, $V_S = 6$ V, $R_L = 8$ Ω , $P_0 = 125 \text{ mW}, f = 1 \text{ kHz}$
- Available in 8-Pin MSOP Package

Applications

- **AM-FM Radio Amplifiers**
- Portable Tape Player Amplifiers
- Intercoms
- TV Sound Systems
- Line Drivers
- **Ultrasonic Drivers**
- **Small Servo Drivers**
- **Power Converters**

3 Description

The LM386M-1 and LM386MX-1 are power amplifiers designed for use in low voltage consumer applications. The gain is internally set to 20 to keep external part count low, but the addition of an external resistor and capacitor between pins 1 and 8 will increase the gain to any value from 20 to 200.


The inputs are ground referenced while the output automatically biases to one-half the supply voltage. The quiescent power drain is only 24 mW when operating from a 6-V supply, making the LM386M-1 and LM386MX-1 ideal for battery operation.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
LM386N-1	PDIP (8)	9.60 mm × 6.35 mm
LM386N-3	PDIP (8)	9.60 mm × 6.35 mm
LM386N-4	PDIP (8)	9.60 mm × 6.35 mm
LM386M-1	SOIC (8)	4.90 mm × 3.90 mm
LM386MX-1	SOIC (8)	4.90 mm × 3.90 mm
LM386MMX-1	VSSOP (8)	3.00 mm × 3.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Schematic

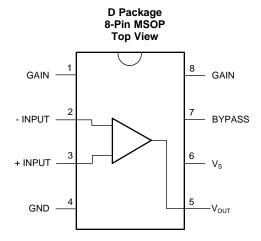
Table of Contents

1	Features 1	9	Application and Implementation	. 8
2	Applications 1		9.1 Application Information	. 8
3	Description 1		9.2 Typical Application	. 8
4	Revision History2	10	Power Supply Recommendations	1
5	Pin Configuration and Functions 3	11	Layout	16
6	Specifications3		11.1 Layout Guidelines	1
	6.1 Absolute Maximum Ratings		11.2 Layout Examples	1
	6.2 ESD Ratings	12	Device and Documentation Support	18
	6.3 Recommended Operating Conditions 4		12.1 Device Support	
	6.4 Thermal Information		12.2 Documentation Support	18
	6.5 Electrical Characteristics		12.3 Related Links	18
	6.6 Typical Characteristics 5		12.4 Receiving Notification of Documentation Updates	18
7	Parameter Measurement Information		12.5 Community Resources	18
8	Detailed Description 7		12.6 Trademarks	18
•	8.1 Overview		12.7 Electrostatic Discharge Caution	1
	8.2 Functional Block Diagram		12.8 Glossary	18
	8.3 Feature Description	13	Mechanical, Packaging, and Orderable	
	8.4 Device Functional Modes		Information	19

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

CI	hanges from Revision B (March 2017) to Revision C	Page
•	Changed devices LM386M-1/LM386MX-1 To: LM386 in the data sheet title	1
•	Changed From: LM386N-4 To: Speaker Impedance in the Recommended Operating Conditions table	4
•	Changed From: 5 Ω to 12 Ω To: 5 V to 12 V for Supply Voltage in Table 1	8
•	Changed kW To: $k\Omega$ in the Gain Control section	
•	Changed kW To: $k\Omega$ in the Input Biasing section	9
•	Changed Figure 11	9
•	Changed From: 5 Ω to 12 Ω To: 5 V to 12 V for Supply Voltage in Table 2	10
•	Changed Figure 13	10
•	Changed From: 5 Ω to 12 Ω To: 5 V to 12 V for Supply Voltage in Table 3	11
•	Changed Figure 15	11
•	Changed From: 5 Ω to 12 Ω To: 5 V to 12 V for Supply Voltage in Table 4	12
•	Changed Figure 17	12
•	Changed From: 5 Ω to 12 Ω To: 5 V to 12 V for Supply Voltage in Table 5	13
•	Changed From: 5 Ω to 12 Ω To: 5 V to 12 V for Supply Voltage in Table 6	14
•	Changed Figure 21	14
•	Changed From: 5 Ω to 12 Ω To: 5 V to 12 V for Supply Voltage in Table 7	
•	Changed Figure 23	15



Submit Documentation Feedback

Copyright © 2004–2017, Texas Instruments Incorporated

5 Pin Configuration and Functions

Pin Functions

1 III 1 dilottorio				
PIN		TYPE	DECCRIPTION	
NAME	NO.	ITPE	DESCRIPTION	
GAIN	1	_	Gain setting pin	
-INPUT	2	I	Inverting input	
+INPUT	3	I	Noninverting input	
GND	4	Р	Ground reference	
V _{OUT}	5	0	Output	
V _S	6	Р	Power supply voltage	
BYPASS	7	0	Bypass decoupling path	
GAIN	8	_	Gain setting pin	

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Cupply Voltage V	LM386N-1/-3, LM386M-1		15	V
Supply Voltage, V _{CC}	LM386N-4		22	V
	LM386N		1.25	
Package Dissipation	LM386M		0.73	W
	LM386MM-1		0.595	
Input Voltage, V _I		-0.4	0.4	V
Storage temperature, T _{stg}		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±1000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±1000	V

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

Copyright © 2004–2017, Texas Instruments Incorporated

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
M	Supply Voltage	4	12	V
V _{CC}	LM386N-4	5	18	V
	Speaker Impedance	4		Ω
VI	Analog input voltage	-0.4	0.4	V
TA	Operating free-air temperature	0	70	°C

6.4 Thermal Information

		LM386	LM386	LM386	
	THERMAL METRIC ⁽¹⁾	D (SOIC)	DGK (VSSOP)	P (PDIP)	UNIT
		8	8	8	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	115.7	169.3	53.4	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	59.7	73.1	42.1	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	56.2	100.2	30.6	°C/W
ΨЈТ	Junction-to-top characterization parameter	12.4	9.2	19.0	°C/W
ΨЈВ	Junction-to-board characterization parameter	55.6	99.1	50.5	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _S Operating Supply Voltage		LM386N-1, -3, LM386M-1, LM386MM-1	4		12	V
٧S	Operating Supply Voltage	LM386N-4	5		18	V
IQ	Quiescent Current	$V_{S} = 6 V, V_{IN} = 0$		4	8	mA
		$V_S = 6 \text{ V}, R_L = 8 \Omega, \text{ THD} = 10\%$ (LM386N-1, LM386M-1, LM386MM-1)	250	325		
P _{OUT}	Output Power	$V_S = 9 \text{ V}, R_L = 8 \Omega, \text{ THD} = 10\%$ (LM386N-3)	500	700		mW
		$V_S = 16 \text{ V}, R_L = 32 \Omega, \text{ THD} = 10\%$ (LM386N-4)	700	100		
^	Voltage Cain	V _S = 6 V, f = 1 kHz		26		dB
A _V Voltage Gain		10 μF from Pin 1 to 8		46		
BW	Bandwidth	V _S = 6 V, Pins 1 and 8 Open		300		kHz
THD Total Harmonic Distortion		V_S = 6 V, R_L = 8 Ω , POUT = 125 mW f = 1 kHz, Pins 1 and 8 Open		0.2%		
PSRR	Power Supply Rejection Ratio	V_S = 6 V, f = 1 kHz, CBYPASS = 10 μ F Pins 1 and 8 Open, Referred to Output		50		dB
R _{IN}	Input Resistance			50		kΩ
I _{BIAS}	Input Bias Current	V _S = 6 V, Pins 2 and 3 Open		250		nA

6.6 Typical Characteristics

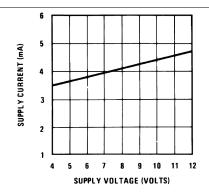


Figure 1. Supply Current vs Supply Voltage

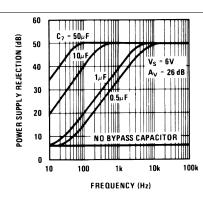


Figure 2. Power Supply Rejection vs Frequency

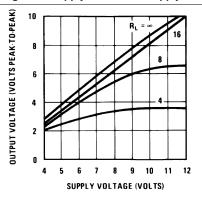


Figure 3. Output Voltage vs Supply Voltage

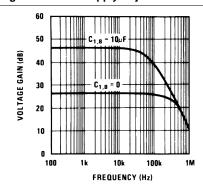


Figure 4. Voltage Gain vs Frequency

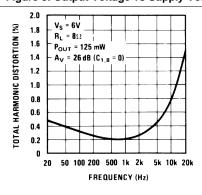


Figure 5. Total Harmonic Distortion vs Frequency

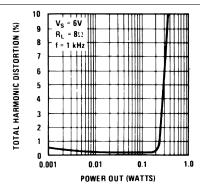
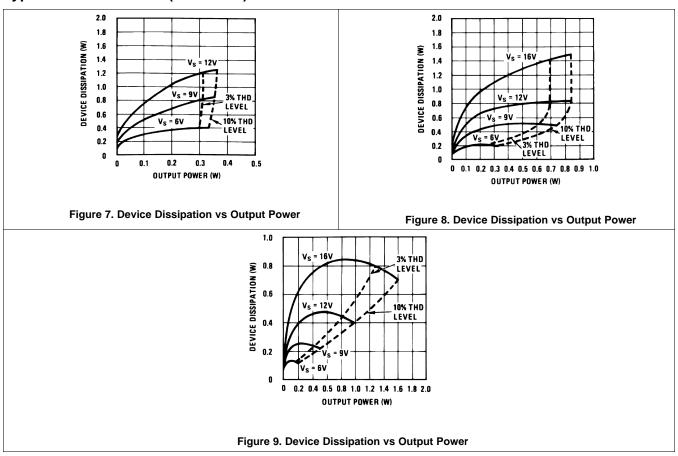
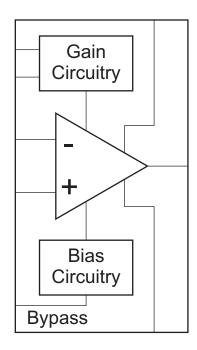



Figure 6. Total Harmonic Distortion vs Power Out

Typical Characteristics (continued)

7 Parameter Measurement Information

All parameters are measured according to the conditions described in the Specifications section.



8 Detailed Description

8.1 Overview

The LM386 is a mono low voltage amplifier that can be used in a variety of applications. It can drive loads from 4 Ω to 32 Ω . The gain is internally set to 20 but it can be modified from 20 to 200 by placing a resistor and capacitor between pins 1 and 8. This device comes in three different 8-pin packages as PDIP, SOIC and VSSOP to fit in different applications.

8.2 Functional Block Diagram

8.3 Feature Description

There is an internal 1.35-K Ω resistor that sets the gain of this device to 20. The gain can be modified from 20 to 200. Detailed information about gain setting can be found in the *Detailed Design Procedure* section.

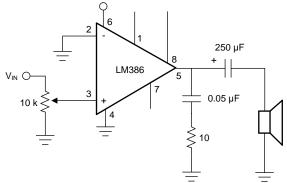
8.4 Device Functional Modes

As this is an Op Amp it can be used in different configurations to fit in several applications. The internal gain setting resistor allows the LM386 to be used in a very low part count system. In addition a series resistor can be placed between pins 1 and 5 to modify the gain and frequency response for specific applications.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.


9.1 Application Information

Below are shown different setups that show how the LM386 can be implemented in a variety of applications.

9.2 Typical Application

9.2.1 LM386 with Gain = 20

Figure 10 shows the minimum part count application that can be implemented using LM386. Its gain is internally set to 20.

Copyright © 2017, Texas Instruments Incorporated

Figure 10. LM386 with Gain = 20

9.2.1.1 Design Requirements

Table 1. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Load Impedance	4 Ω to 32 Ω
Supply Voltage	5 V to 12 V

9.2.1.2 Detailed Design Procedure

9.2.1.2.1 Gain Control

To make the LM386 a more versatile amplifier, two pins (1 and 8) are provided for gain control. With pins 1 and 8 open the 1.35-k Ω resistor sets the gain at 20 (26 dB). If a capacitor is put from pin 1 to 8, bypassing the 1.35-k Ω resistor, the gain will go up to 200 (46 dB). If a resistor is placed in series with the capacitor, the gain can be set to any value from 20 to 200. Gain control can also be done by capacitively coupling a resistor (or FET) from pin 1 to ground.

Additional external components can be placed in parallel with the internal feedback resistors to tailor the gain and frequency response for individual applications. For example, we can compensate poor speaker bass response by frequency shaping the feedback path. This is done with a series RC from pin 1 to 5 (paralleling the internal 15-k Ω resistor). For 6 dB effective bass boost: R ~= 15 k Ω , the lowest value for good stable operation is R = 10 k Ω if pin 8 is open. If pins 1 and 8 are bypassed then R as low as 2 k Ω can be used. This restriction is because the amplifier is only compensated for closed-loop gains greater than 9.

9.2.1.2.2 Input Biasing

The schematic shows that both inputs are biased to ground with a 50 k Ω resistor. The base current of the input transistors is about 250 nA, so the inputs are at about 12.5 mV when left open. If the dc source resistance driving the LM386 is higher than 250 k Ω it will contribute very little additional offset (about 2.5 mV at the input, 50 mV at the output). If the dc source resistance is less than 10 k Ω , then shorting the unused input to ground will keep the offset low (about 2.5 mV at the input, 50 mV at the output). For dc source resistances between these values we can eliminate excess offset by putting a resistor from the unused input to ground, equal in value to the dc source resistance. Of course all offset problems are eliminated if the input is capacitively coupled.

When using the LM386 with higher gains (bypassing the 1.35 k Ω resistor between pins 1 and 8) it is necessary to bypass the unused input, preventing degradation of gain and possible instabilities. This is done with a 0.1 μ F capacitor or a short to ground depending on the dc source resistance on the driven input.

9.2.1.3 Application Curve

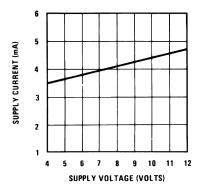
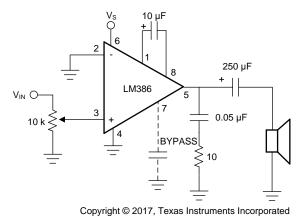



Figure 11. Supply Current vs Supply Voltage

Copyright © 2004–2017, Texas Instruments Incorporated

9.2.2 LM386 with Gain = 200

Copyright @ 2017, Texas matruments incorporate

Figure 12. LM386 with Gain = 200

9.2.2.1 Design Requirements

Table 2. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Load Impedance	4 Ω to 32 Ω
Supply Voltage	5 V to 12 V

9.2.2.2 Detailed Design Procedure

The Detailed Design Procedure can be found in the *Detailed Design Procedure* section.

9.2.2.3 Application Curve

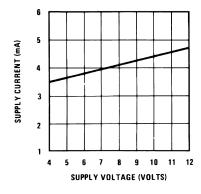
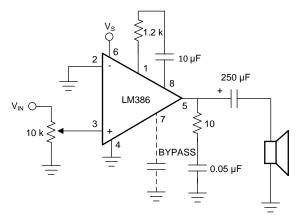



Figure 13. Supply Current vs Supply Voltage

9.2.3 LM386 with Gain = 50

Copyright © 2017, Texas Instruments Incorporated

Figure 14. LM386 with Gain = 50

9.2.3.1 Design Requirements

Table 3. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Load Impedance	4 Ω to 32 Ω
Supply Voltage	5 V to 12 V

9.2.3.2 Detailed Design Procedure

The Detailed Design Procedure can be found in the Detailed Design Procedure section.

9.2.3.3 Application Curve

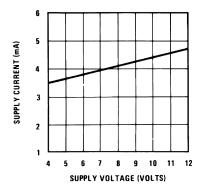
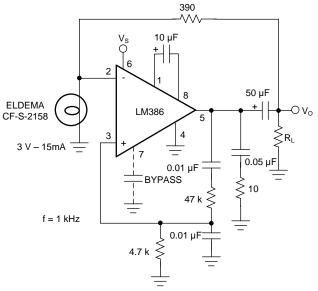



Figure 15. Supply Current vs Supply Voltage

9.2.4 Low Distortion Power Wienbridge Oscillator

Copyright © 2017, Texas Instruments Incorporated

Figure 16. Low Distortion Power Wienbridge Oscillator

9.2.4.1 Design Requirements

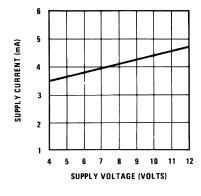
Table 4. Design Parameters

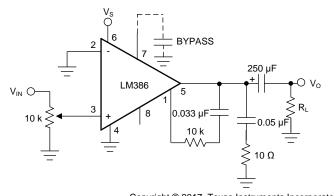
DESIGN PARAMETER	EXAMPLE VALUE
Load Impedance	4 Ω to 32 Ω
Supply Voltage	5 V to 12 V

9.2.4.2 Detailed Design Procedure

The Detailed Design Procedure can be found in the Detailed Design Procedure section.

9.2.4.3 Application Curve




Figure 17. Supply Current vs Supply Voltage

Copyright © 2004–2017, Texas Instruments Incorporated Product Folder Links: LM386

12

9.2.5 LM386 with Bass Boost

Copyright © 2017, Texas Instruments Incorporated

Figure 18. LM386 with Bass Boost

9.2.5.1 Design Requirements

Table 5. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Load Impedance	4 Ω to 32 Ω
Supply Voltage	5 V to 12 V

9.2.5.2 Detailed Design Procedure

The Detailed Design Procedure can be found in the *Detailed Design Procedure* section.

9.2.5.3 Application Curve

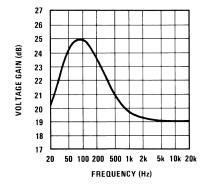
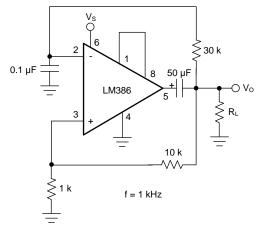



Figure 19. Voltage Gain vs Frequency

9.2.6 Square Wave Oscillator

Copyright © 2017, Texas Instruments Incorporated

Figure 20. Square Wave Oscillator

Table 6. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE			
Load Impedance	4 Ω to 32 Ω			
Supply Voltage	5 V to 12 V			

9.2.6.1 Detailed Design Procedure

The Detailed Design Procedure can be found in the *Detailed Design Procedure* section.

9.2.6.2 Application Curve

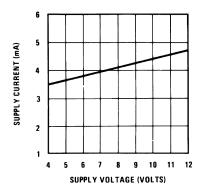


Figure 21. Supply Current vs Supply Voltage

9.2.7 AM Radio Power Amplifier

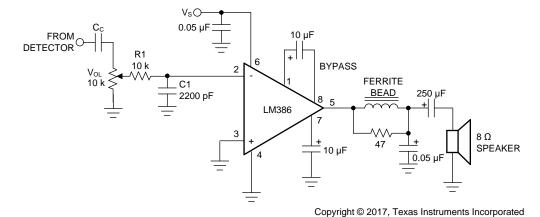


Figure 22. AM Radio Power Amplifier

9.2.7.1 Design Requirements

Table 7. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Load Impedance	4 Ω to 32 Ω
Supply Voltage	5 V to 12 V

9.2.7.2 Detailed Design Procedure

The Detailed Design Procedure can be found in the Detailed Design Procedure section.

9.2.7.3 Application Curve

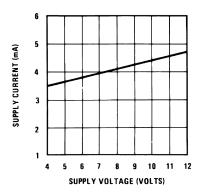


Figure 23. Supply Current vs Supply Voltage

10 Power Supply Recommendations

The LM386 is specified for operation up to 12 V or 18 V. The power supply should be well regulated and the voltage must be within the specified values. It is recommended to place a capacitor to GND close to the LM386 power supply pin.

Copyright © 2004–2017, Texas Instruments Incorporated

11 Layout

11.1 Layout Guidelines

Place all required components as close as possible to the device. Use short traces for the output to the speaker connection. Route the analog traces far from the digital signal traces and avoid crossing them.

11.2 Layout Examples

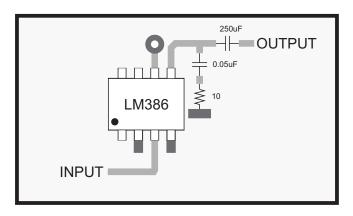


Figure 24. Layout Example for Minimum Parts Gain = 20 dB on PDIP package

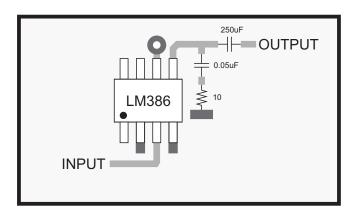


Figure 25. Layout Example for Minimum Parts Gain = 20 dB on SOIC package

Layout Examples (continued)

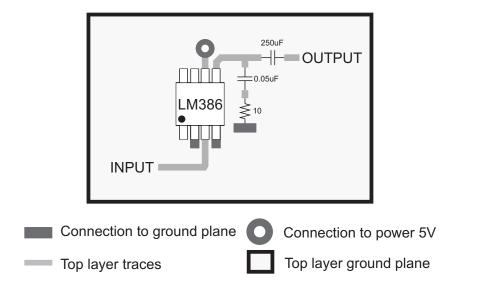


Figure 26. Layout Example for Minimum Parts Gain = 20 dB on VSSOP package

12 Device and Documentation Support

12.1 Device Support

12.1.1 Development Support

12.2 Documentation Support

12.3 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to order now.

Table 8. Related Links

PARTS	PRODUCT FOLDER	ORDER NOW	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
LM386M-1	Click here	Click here	Click here	Click here	Click here
LM386MX-1	Click here	Click here	Click here	Click here	Click here

12.4 Receiving Notification of Documentation Updates

To receive notification of documentation updates — go to the product folder for your device on ti.com. In the upper right-hand corner, click the *Alert me* button to register and receive a weekly digest of product information that has changed (if any). For change details, check the revision history of any revised document.

12.5 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.6 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.7 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Product Folder Links: LM386

12.8 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2004–2017, Texas Instruments Incorporated

6-Feb-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM386M-1/NOPB	ACTIVE	SOIC	D	8	95	Green (RoHS & no Sb/Br)	SN	Level-1-260C-UNLIM	0 to 70	LM386 M-1	Samples
LM386MMX-1/NOPB	ACTIVE	VSSOP	DGK	8	3500	Green (RoHS & no Sb/Br)	SN	Level-1-260C-UNLIM	0 to 70	Z86	Samples
LM386MX-1/NOPB	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	SN	Level-1-260C-UNLIM	0 to 70	LM386 M-1	Samples
LM386N-1/NOPB	ACTIVE	PDIP	Р	8	40	Green (RoHS & no Sb/Br)	Call TI SN	Level-1-NA-UNLIM	0 to 70	LM 386N-1	Samples
LM386N-3/NOPB	ACTIVE	PDIP	Р	8	40	Green (RoHS & no Sb/Br)	SN	Level-1-NA-UNLIM	0 to 70	LM 386N-3	Samples
LM386N-4/NOPB	ACTIVE	PDIP	Р	8	40	Green (RoHS & no Sb/Br)	Call TI SN	Level-1-NA-UNLIM	0 to 70	LM 386N-4	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

6-Feb-2020

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

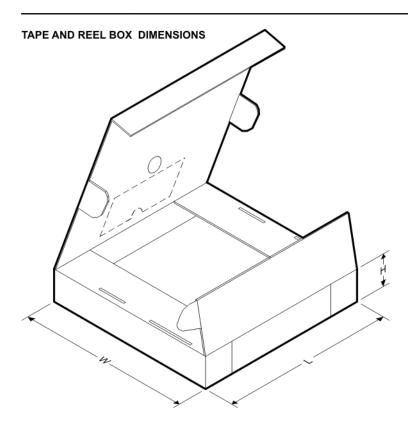
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 26-May-2017

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM386MMX-1/NOPB	VSSOP	DGK	8	3500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM386MX-1/NOPB	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1

www.ti.com 26-May-2017

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM386MMX-1/NOPB	VSSOP	DGK	8	3500	367.0	367.0	35.0
LM386MX-1/NOPB	SOIC	D	8	2500	367.0	367.0	35.0

SMALL OUTLINE INTEGRATED CIRCUIT

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

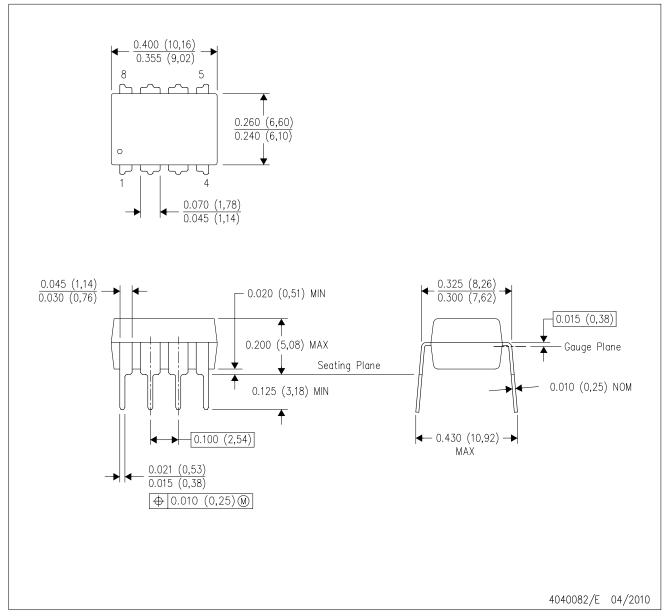
SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

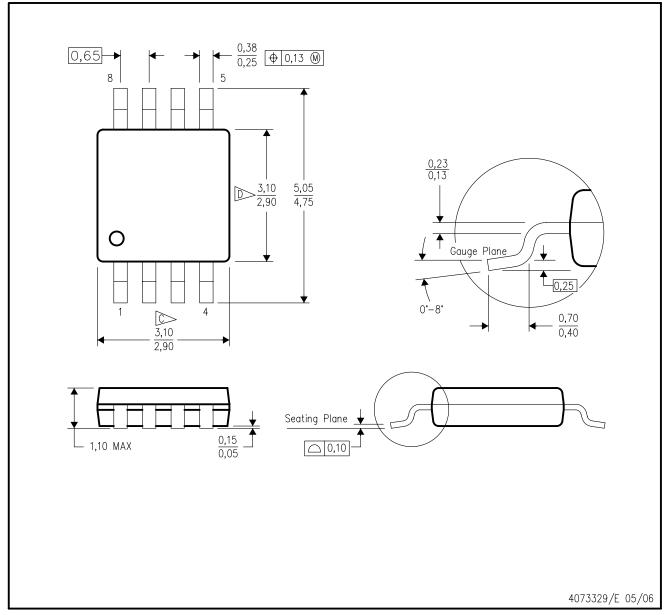
SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

P (R-PDIP-T8)

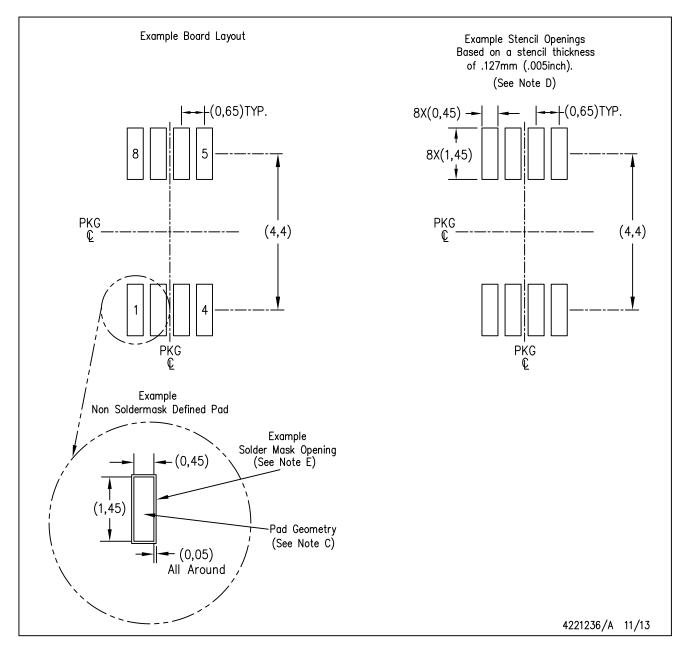
PLASTIC DUAL-IN-LINE PACKAGE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGK (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated