

LT1007/LT1037

Low Noise, High Speed Precision Operational Amplifiers

FEATURES

- Guaranteed 4.5nV/√Hz 10Hz Noise
- *Guaranteed* 3.8nV/√Hz 1kHz Noise
- 0.1Hz to 10Hz Noise, 60nV_{P-P} Typical
- Guaranteed 7 Million Min Voltage Gain, R₁ = 2k
- Guaranteed 3 Million Min Voltage Gain, $R_{I} = 600\Omega$
- Guaranteed 25µV Max Offset Voltage
- Guaranteed 0.6µV/°C Max Drift with Temperature
- Guaranteed 11V/µs Min Slew Rate (LT1037)
- Guaranteed 117dB Min CMRR

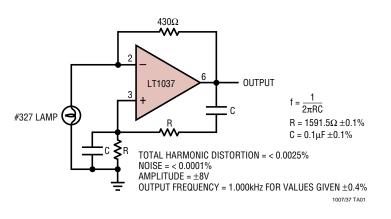
APPLICATIONS

- Low Noise Signal Processing
- Microvolt Accuracy Threshold Detection
- Strain Gauge Amplifiers
- Direct Coupled Audio Gain Stages
- Sine Wave Generators
- Tape Head Preamplifiers
- Microphone Preamplifiers

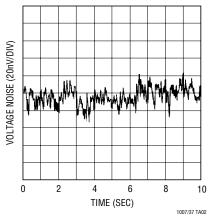
T, LTC and LT are registered trademarks of Linear Technology Corporation.

DESCRIPTION

The LT[®]1007/LT1037 series features the lowest noise performance available to date for monolithic operational amplifiers: 2.5nV/ \sqrt{Hz} wideband noise (less than the noise of a 400 Ω resistor), 1/f corner frequency of 2Hz and 60nV peak-to-peak 0.1Hz to 10Hz noise. Low noise is combined with outstanding precision and speed specifications: 10 μ V offset voltage, 0.2 μ V/°C drift, 130dB common mode and power supply rejection, and 60MHz gain bandwidth product on the decompensated LT1037, which is stable for closed-loop gains of 5 or greater.


The voltage gain of the LT1007/LT1037 is an extremely high 20 million driving a $2k\Omega$ load and 12 million driving a 600Ω load to $\pm10V.$

In the design, processing and testing of the device, particular attention has been paid to the optimization of the entire distribution of several key parameters. Consequently, the specifications of even the lowest cost grades (the LT1007C and the LT1037C) have been spectacularly improved compared to equivalent grades of competing amplifiers.


The sine wave generator application shown below utilizes the low noise and low distortion characteristics of the LT1037.

0.1Hz to 10Hz Noise

TYPICAL APPLICATION

Ultrapure 1kHz Sine Wave Generator

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage	±22V
Input Voltage	Equal to Supply Voltage
Output Short-Circuit Duration	Indefinite
Differential Input Current (Note	9) ±25mA
Storage Temperature Range	,

Lead Temperature (Soldering, 10 se	ec.)
Operating Temperature Range	
	000 + 2000

LIIUU//LIIU3/AU, U	
LT1007/LT1037I –40°C to 85°C	
LT1007/LT1037AM. M (OBSOLETE) -55°C to 125°C	

PACKAGE/ORDER INFORMATION

TOP VIEW VOS TRIM -IN 2 +IN 3 V- 4 N8 PACKAGE 8-LEAD PDIP T _{JMAX} = 100°C, θ_{JA} = 130°C/W (N8)	TOP VIEW V_{OS} TRIM V_{OS} TRIM V_{OS} TRIM V_{OS} TRIM V_{OS} TRIM V_{OS} TRIM V_{OS} TRIM V^{-} (CASE) H PACKAGE 8-LEAD TO-5 METAL CAN T_JMAX = 150°C, $\Theta_{JA} = 150°C/W, \Theta_{JC} = 45°C/W$	TOP VIEW VOS 1 TRIM -IN 2 +IN 3 V^- 4 S8 PACKAGE 8-LEAD PLASTIC S0 TJMAX = 150°C, $\theta_{JA} = 190°C/W$
ORDER PART NUMBER	ORDER PART NUMBER	ORDER PART NUMBER
LT1007ACN8 LT1037ACN8 LT1007CN8 LT1037CN8 LT1007IN8 LT1037IN8		LT1007CS8 LT1037CS8 LT1007IS8 LT1037IS8
J8 PACKAGE LEAD CERDIP Τ _{.IMAX} = 150°C, θ _{.IA} = 100°C/W (J8)		S8 PART MARKING
LT1007ACJ8 LT1037ACJ8 LT1007AMJ8 LT1037AMJ8 LT1007CJ8 LT1037CJ8 LT1007MJ8 LT1037MJ8	LT1007ACH LT1037ACH LT1007AMH LT1037AMH LT1007CH LT1037CH LT1007MH LT1037MH	1007 1037 10071 10371
OBSOLETE PACKAGE Consider the N8 Package for Alternate Source	OBSOLETE PACKAGE Consider the N8 or S8 Package for Alternate Source	

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS $V_{S} = \pm 15V$, $T_{A} = 25^{\circ}C$, unless otherwise noted.

				1007AC// 1037AC//			1007C/I, 1037C/I,		
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	(Note 2)		10	25		20	60	μV
$\frac{\Delta V_{0S}}{\Delta Time}$	Long Term Input Offset Voltage Stability	(Notes 3, 4)		0.2	1.0		0.2	1.0	μV/Mo
I _{OS}	Input Offset Current			7	30		12	50	nA
IB	Input Bias Current			±10	±35		±15	±55	nA
e _n	Input Noise Voltage	0.1Hz to 10Hz (Notes 4, 6)		0.06	0.13		0.06	0.13	μV _{P-P}
	Input Noise Voltage Density	$f_0 = 10$ Hz (Notes 4, 5) $f_0 = 1000$ Hz (Note 4)		2.8 2.5	4.5 3.8		2.8 2.5	4.5 3.8	nV/√Hz nV/√Hz
i _n	Input Noise Current Density	$f_0 = 10$ Hz (Notes 4, 7) $f_0 = 1000$ Hz (Notes 4, 7)		1.5 0.4	4.0 0.6		1.5 0.4	4.0 0.6	pA/√Hz pA/√Hz

ELECTRICAL CHARACTERISTICS $V_S = \pm 15V$, $T_A = 25^{\circ}C$, unless otherwise noted.

SYMBOL	PARAMETER		CONDITIONS		1007AC// 1037AC// Typ			T1007C/I/ T1037C/I/ TYP		UNITS
	Input Resistance, Co	ommon Mode			7			5		GΩ
	Input Voltage Range)		±11.0	±12.5		±11.0	±12.5		V
CMRR	Common Mode Reje	ection Ratio	$V_{CM} = \pm 11V$	117	130		110	126		dB
PSRR	Power Supply Reject	tion Ratio	$V_{\rm S} = \pm 4V$ to $\pm 18V$	110	130		106	126		dB
A _{VOL}	Large-Signal Voltage	e Gain	$\begin{array}{l} R_L \geq 2k, V_0 = \pm 12V \\ R_L \geq 1k, V_0 = \pm 10V \\ R_L \geq 600\Omega, V_0 = \pm 10V \end{array}$	7.0 5.0 3.0	20.0 16.0 12.0		5.0 3.5 2.0	20.0 16.0 12.0		V/μV V/μV V/μV
V _{OUT}	Maximum Output Vo	oltage Swing	$\begin{array}{l} R_L \geq 2k \\ R_L \geq 600 \Omega \end{array}$	±13.0 ±11.0	±13.8 ±12.5		±12.5 ±10.5	±13.5 ±12.5		V V
SR	Slew Rate	LT1007 LT1037	$\begin{array}{l} R_L \geq 2k \\ A_{VCL} \geq 5 \end{array}$	1.7 11	2.5 15		1.7 11	2.5 15		V/µs V/µs
GBW	Gain Bandwidth Product	LT1007 LT1037		5.0 45	8.0 60		5.0 45	8.0 60		MHz MHz
Z ₀	Open-Loop Output F	Resistance	$V_0 = 0V, I_0 = 0$		70			70		Ω
P _D	Power Dissipation	LT1007 LT1037			80 80	120 130		80 85	140 140	mW mW

The \bullet denotes the specifications which apply over the temperature range 0°C \leq T_A \leq 70°C, V_S = ±15V, unless otherwise noted.

				LT1007A(LT1037A(LT1007C LT1037C			
SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
V _{OS}	Input Offset Voltage	(Note 2)	•		20	50		35	110	μV
ΔV _{OS} ΔTemp	Average Input Offset Drift	(Note 10)	•		0.2	0.6		0.3	1.0	μV/°C
I _{OS}	Input Offset Current		•		10	40		15	70	nA
I _B	Input Bias Current		•		±14	±45		±20	±75	nA
	Input Voltage Range		•	±10.5	±11.8		±10.5	±11.8		V
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 10.5 V$	•	114	126		106	120		dB
PSRR	Power Supply Rejection Ratio	$V_{\rm S} = \pm 4.5 V \text{ to } \pm 18 V$	•	106	126		102	120		dB
A _{VOL}	Large-Signal Voltage Gain	$\begin{array}{l} R_L \geq 2k, V_0 = \pm 10V \\ R_L \geq 1k, V_0 = \pm 10V \end{array}$	•	4.0 2.5	18.0 14.0		2.5 2.0	18.0 14.0		V/μV V/μV
V _{OUT}	Maximum Output Voltage Swing	$R_L \ge 2k$	•	±12.5	±13.6		±12.0	±13.6		V
P _D	Power Dissipation		•		90	144		90	160	mW

ELECTRICAL CHARACTERISTICS

The \bullet denotes the specifications which apply over the temperature range –40°C \leq T_A \leq 85°C, V_S = ±15V, unless otherwise noted.

		LT1007I/LT1037I					
SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
V _{OS}	Input Offset Voltage	(Note 2)	•		40	125	μV
$\Delta V_{0S} \over \Delta Temp$	Average Input Offset Drift	(Note 10)	•		0.3	1.0	μV/°C
I _{OS}	Input Offset Current		•		20	80	nA
I _B	Input Bias Current		•		±25	±90	nA
	Input Voltage Range		•	±10	±11.7		V
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 10.5 V$	•	105	120		dB
PSRR	Power Supply Rejection Ratio	$V_{S} = \pm 4.5 V \text{ to } \pm 18 V$	•	101	120		dB
A _{VOL}	Large-Signal Voltage Gain	$\begin{array}{l} R_L \geq 2k, \ V_0 = \pm 10V \\ R_L \geq 1k, \ V_0 = \pm 10V \end{array}$	•	2.0 1.5	15.0 12.0		V/μV V/μV
V _{OUT}	Maximum Output Voltage Swing	$R_L \ge 2k$	•	±12.0	±13.6		V
P _D	Power Dissipation		•		95	165	mW

The \bullet denotes the specifications which apply over the temperature range – 55°C \leq T_A \leq 125°C, V_S = ±15V, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		LT100 Min	7AM/LT1 Typ	037AM Max	LT10 Min	07M/LT1 Typ	037M Max	UNITS
V _{OS}	Input Offset Voltage	(Note 2)			25	60		50	160	μV
ΔV _{OS} ΔTemp	Average Input Offset Drift	(Note 10)	•		0.2	0.6		0.3	1.0	μV/°C
l _{os}	Input Offset Current		•		15	50		20	85	nA
I _B	Input Bias Current		•		±20	±60		±35	±95	nA
	Input Voltage Range		•	±10.3	±11.5		±10.3	±11.5		V
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 10.3 V$	•	112	126		104	120		dB
PSRR	Power Supply Rejection Ratio	$V_{\rm S}$ = ±4.5V to ±18V	•	104	126		100	120		dB
A _{VOL}	Large-Signal Voltage Gain	$\begin{array}{l} R_L \geq 2k, \ V_0 = \pm 10V \\ R_L \geq 1k, \ V_0 = \pm 10V \end{array}$	•	3.0 2.0	14.0 10.0		2.0 1.5	14.0 10.0		V/μV V/μV
V _{OUT}	Maximum Output Voltage Swing	$R_L \ge 2k$	•	±12.5	±13.5		±12.0	±13.5		V
P _D	Power Dissipation		•		100	150		100	170	mW

For MIL-STD components, please refer to LTC 883C data sheet for test listing and parameters.

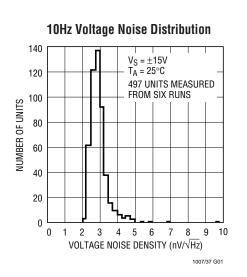
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

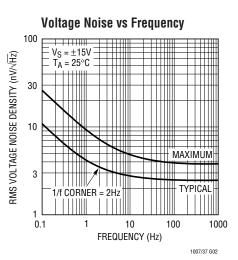
Note 2: Input Offset Voltage measurements are performed by automatic test equipment approximately 0.5 seconds after application of power. AM and AC grades are guaranteed fully warmed up.

Note 3: Long Term Input Offset Voltage Stability refers to the average trend line of Offset Voltage vs Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in V_{OS} during the first 30 days are typically 2.5 μ V. Refer to typical performance curve.

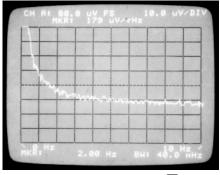
Note 4: This parameter is tested on a sample basis only.

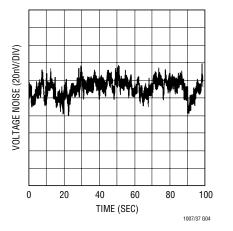
Note 5: 10Hz noise voltage density is sample tested on every lot. Devices 100% tested at 10Hz are available on request.


Note 6: See the test circuit and frequency response curve for 0.1Hz to 10Hz tester in the Applications Information section.

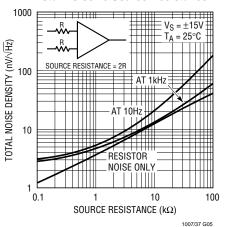

Note 7: See the test circuit for current noise measurement in the Applications Information section.

Note 8: This parameter is guaranteed by design and is not tested.


Note 9: The inputs are protected by back-to-back diodes. Current limiting resistors are not used in order to achieve low noise. If differential input voltage exceeds $\pm 0.7V$, the input current should be limited to 25mA. **Note 10:** The Average Input Offset Drift performance is within the specifications unnulled or when nulled with a pot having a range of $8k\Omega$ to $20k\Omega$.



0.02Hz to 10Hz RMS Noise. Gain = 50,000 (Measured on HP3582 Spectrum Analyzer)


MARKER AT 2Hz (= 1/f CORNER) = $\frac{179\mu V/\sqrt{Hz}}{50,000}$ = $3.59 \frac{NV}{\sqrt{Hz}}$

0.01Hz to 1Hz Peak-to-Peak Noise

Current Noise vs Frequency 10 Ħ RMS NOISE DENSITY (pA/VHz) 3 MAXIMUM 1 TYPICAL 0.3 1/f CORNER = 120Hz 0.1 10 100 1k 10k FREQUENCY (Hz) 1007/37 G07

Total Noise vs Source Resistance

Wideband Voltage Noise

1

10

1

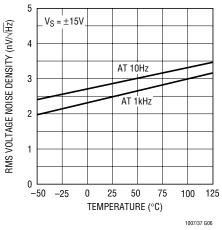
0.1

0.01

0.1

RMS VOLTAGE NOISE (µV)

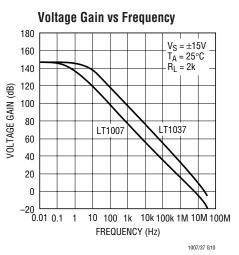
(0.1Hz to Frequency Indicated)

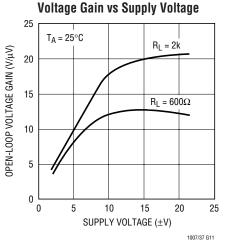

BANDWIDTH (kHz)

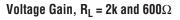
10

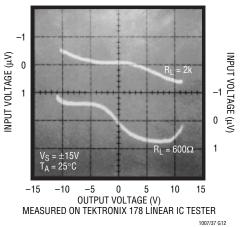

100

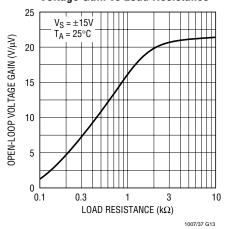
1007/37 G08

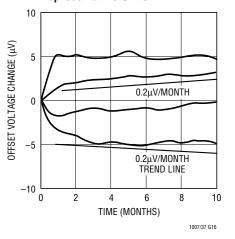

Voltage Noise vs Temperature

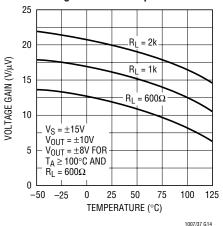


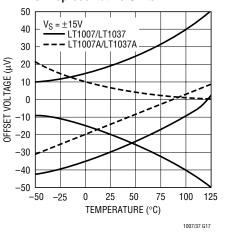

Voltage Noise vs Supply Voltage

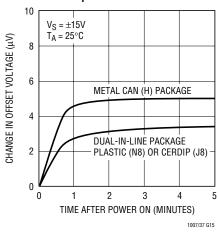


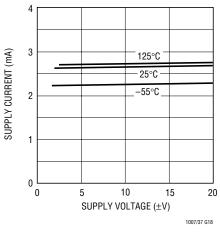


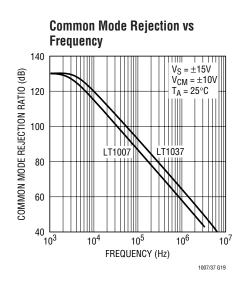


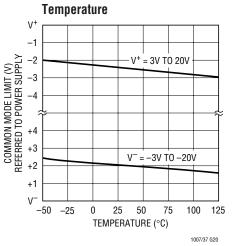

Voltage Gain vs Load Resistance


Long Term Stability of Four Representative Units

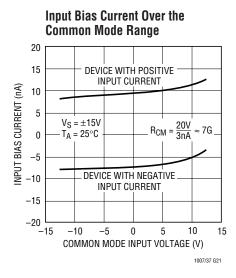

Voltage Gain vs Temperature

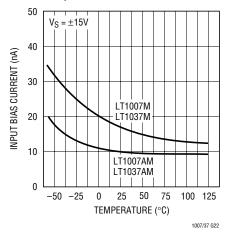

Offset Voltage Drift with Temperature of Representative Units

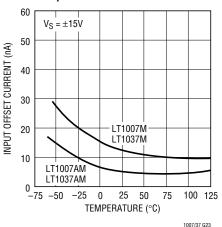

Warm-Up Drift



Supply Current vs Supply Voltage






Common Mode Limit vs

Input Bias Current vs Temperature

Input Offset Current vs Temperature

Closed-Loop Output Impedance

Av =

1k

FREQUENCY (Hz)

A_V = 1000

10k

 $A_V = 5$

LT1007

1M

1007/37 G26

--- LT1037

100k

100

10

1

0.1

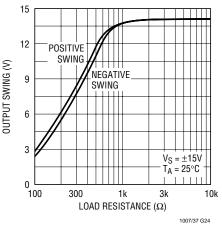
0.01

0.001

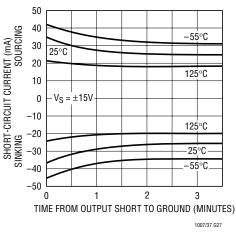
10

OUTPUT IMPEDANCE (Ω)

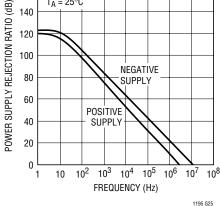
 $V_{S} = \pm 15V$

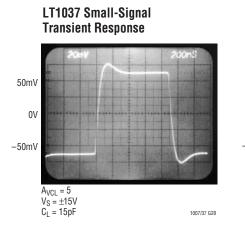

 $T_A^- = 25^{\circ}C$

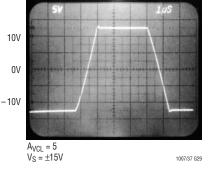
 $A_{V} = 1000$

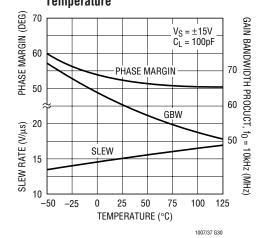

100

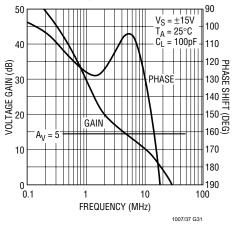
 $I_{OUT} = 1mA$

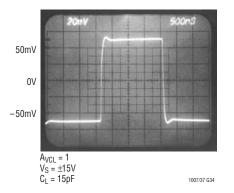

Output Swing vs Load Resistance

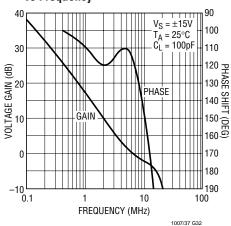

Output Short-Circuit Current vs Time

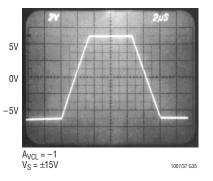

PSRR vs Frequency 160 $T_A = 25^{\circ}C$ 140 120 100 NEGATIVE 80 SUPPLY



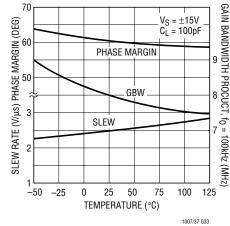

LT1037 Large-Signal Response



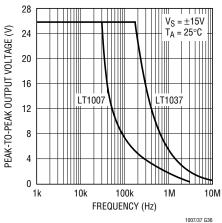

LT1037 Gain, Phase Shift vs Frequency


LT1007 Small-Signal Transient Response

LT1007 Gain, Phase Shift vs Frequency



LT1007 Large-Signal Response



Bandwidth Product, Slew Rate vs Temperature

LT1007 Phase Margin, Gain

Maximum Undistorted Output vs Frequency

APPLICATIONS INFORMATION

General

The LT1007/LT1037 series devices may be inserted directly into OP-07, OP-27, OP-37 and 5534 sockets with or without removal of external compensation or nulling components. In addition, the LT1007/LT1037 may be fitted to 741 sockets with the removal or modification of external nulling components.

Offset Voltage Adjustment

The input offset voltage of the LT1007/LT1037 and its drift with temperature, are permanently trimmed at wafer testing to a low level. However, if further adjustment of V_{OS} is necessary, the use of a 10k Ω nulling potentiometer will not degrade drift with temperature. Trimming to a value other than zero creates a drift of (V_{OS}/300) μ V/°C, e.g., if V_{OS} is adjusted to 300 μ V, the change in drift will be 1 μ V/°C (Figure 1).

The adjustment range with a $10k\Omega$ pot is approximately ± 2.5 mV. If less adjustment range is needed, the sensitivity and resolution of the nulling can be improved by using a smaller pot in conjunction with fixed resistors. The example has an approximate null range of $\pm 200\mu$ V (Figure 2).

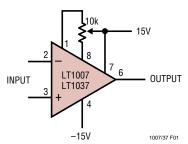


Figure 1. Standard Adjustment

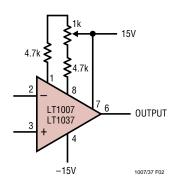


Figure 2. Improved Sensitivity Adjustment

Offset Voltage and Drift

Thermocouple effects, caused by temperature gradients across dissimilar metals at the contacts to the input terminals, can exceed the inherent drift of the amplifier unless proper care is exercised. Air currents should be minimized, package leads should be short, the two input leads should be close together and maintained at the same temperature.

The circuit shown to measure offset voltage is also used as the burn-in configuration for the LT1007/LT1037, with the supply voltages increased to $\pm 20V$ (Figure 3).

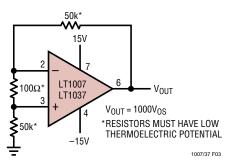


Figure 3. Test Circuit for Offset Voltage and Offset Voltage Drift with Temperature

Unity-Gain Buffer Application (LT1007 Only)

When $R_F \le 100\Omega$ and the input is driven with a fast, largesignal pulse (>1V), the output waveform will look as shown in the pulsed operation diagram (Figure 4).

During the fast feedthrough-like portion of the output, the input protection diodes effectively short the output to the input and a current, limited only by the output short-circuit protection, will be drawn by the signal generator. With $R_F \geq 500\Omega$, the output is capable of handling the current requirements ($I_L \leq 20mA$ at 10V) and the amplifier stays in its active mode and a smooth transition will occur.

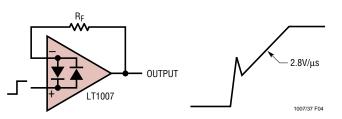


Figure 4. Pulsed Operation

sn100737 100737fbs

9

APPLICATIONS INFORMATION

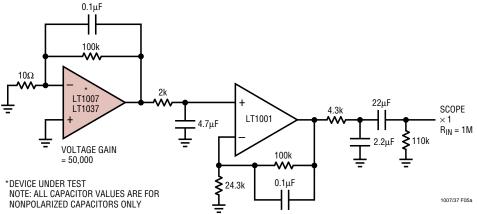
As with all operational amplifiers when $R_F > 2k$, a pole will be created with R_F and the amplifier's input capacitance, creating additional phase shift and reducing the phase margin. A small capacitor (20pFto 50pF) in parallel with R_F will eliminate this problem.

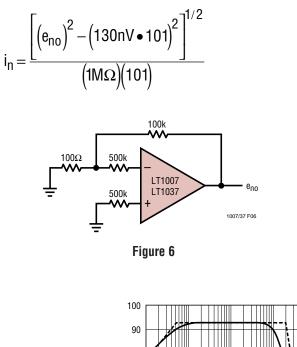
Noise Testing

The 0.1Hz to 10Hz peak-to-peak noise of the LT1007/ LT1037 is measured in the test circuit shown (Figure 5a). The frequency response of this noise tester (Figure 5b) indicates that the 0.1Hz corner is defined by only one zero. The test time to measure 0.1Hz to 10Hz noise should not exceed ten seconds, as this time limit acts as an additional zero to eliminate noise contributions from the frequency band below 0.1Hz.

Measuring the typical 60nV peak-to-peak noise performance of the LT1007/LT1037 requires special test precautions:

- 1. The device should be warmed up for at least five minutes. As the op amp warms up, its offset voltage changes typically $3\mu V$ due to its chip temperature increasing 10° C to 20° C from the moment the power supplies are turned on. In the ten-second measurement interval these temperature-induced effects can easily exceed tens of nanovolts.
- 2. For similar reasons, the device must be well shielded from air currents to eliminate the possibility of thermo-




Figure 5a. 0.1Hz to 10Hz Noise Test Circuit

electric effects in excess of a few nanovolts, which would invalidate the measurements.

3. Sudden motion in the vicinity of the device can also "feedthrough" to increase the observed noise.

A noise voltage density test is recommended when measuring noise on a large number of units. A 10Hz noise voltage density measurement will correlate well with a 0.1Hz to 10Hz peak-to-peak noise reading since both results are determined by the white noise and the location of the 1/f corner frequency.

Current noise is measured in the circuit shown in Figure 6 and calculated by the following formula:

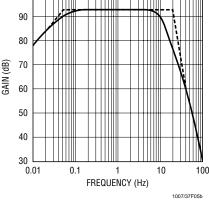


Figure 5b. 0.1Hz to 10Hz Peak-to-Peak Noise Tester Frequency Response

APPLICATIONS INFORMATION

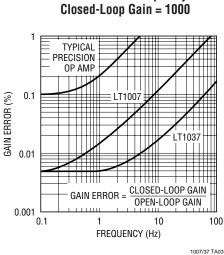
The LT1007/LT1037 achieve their low noise, in part, by operating the input stage at 120µA versus the typical 10µA of most other op amps. Voltage noise is inversely proportional while current noise is directly proportional to the square root of the input stage current. Therefore, the LT1007/LT1037's current noise will be relatively high. At low frequencies, the low 1/f current noise corner frequency (\approx 120Hz) minimizes current noise to some extent.

In most practical applications, however, current noise will not limit system performance. This is illustrated in the Total Noise vs Source Resistance plot in the Typical Performance Characteristics section, where:

Total Noise = $[(voltage noise)^2 + (current noise • R_S)^2 +$ $(resistor noise)^2 l^{1/2}$

Three regions can be identified as a function of source resistance:

- (i) $R_{\rm S} \leq 400 \Omega$. Voltage noise dominates
- (ii) $400\Omega \le R_S \le 50k$ at 1kHz] Resistor noise $400\Omega \le R_S \le 8k \text{ at } 10Hz$ dominates
- (iii) $R_S > 50k$ at 1kHz Current noise R_S > 8k at 10Hz J dominates

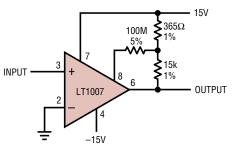

Clearly the LT1007/LT1037 should not be used in region (iii), where total system noise is at least six times higher than the voltage noise of the op amp, i.e., the low voltage noise specification is completely wasted.

TYPICAL APPLICATIONS

15k 20k 340k 5% TRIM 15 365Ω 6 OUTPUT LT1037 **RN60C FILM RESISTORS** INPUT -15\

Gain 1000 Amplifier with 0.01% Accuracy, DC to 5Hz

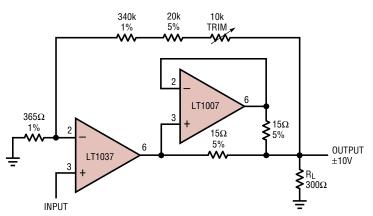
THE HIGH GAIN AND WIDE BANDWIDTH OF THE LT1037 (AND LT1007) IS USEFUL IN LOW FREQUENCY, HIGH CLOSED-LOOP GAIN AMPLIFIER APPLICATIONS. A TYPICAL PRECISION OP AMP MAY HAVE AN OPEN-LOOP GAIN OF ONE MILLION WITH 500kHz BANDWIDTH. AS THE GAIN ERROR PLOT SHOWS, THIS DEVICE IS CAPABLE OF 0.1% AMPLIFYING ACCURACY UP TO 0.3Hz ONLY. EVEN INSTRUMENTATION RANGE SIGNALS CAN VARY AT A FASTER RATE. THE LT1037'S "GAIN PRECISION-BANDWIDTH PRODUCT" IS 200 TIMES HIGHER AS SHOWN.



Gain Error vs Frequency

TYPICAL APPLICATIONS

Microvolt Comparator with Hysteresis



POSITIVE FEEDBACK TO ONE OF THE NULLING TERMINALS CREATES APPROXIMATELY $5\mu V$ of Hysteresis. Output can sink 16mA.

INPUT OFFSET VOLTAGE IS TYPICALLY CHANGED LESS THAN $5\mu V$ due to the feedback.

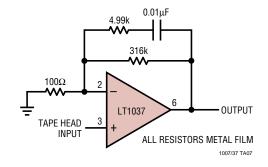
1007/37 TA04

Precision Amplifier Drives 300 Ω Load to $\pm 10V$

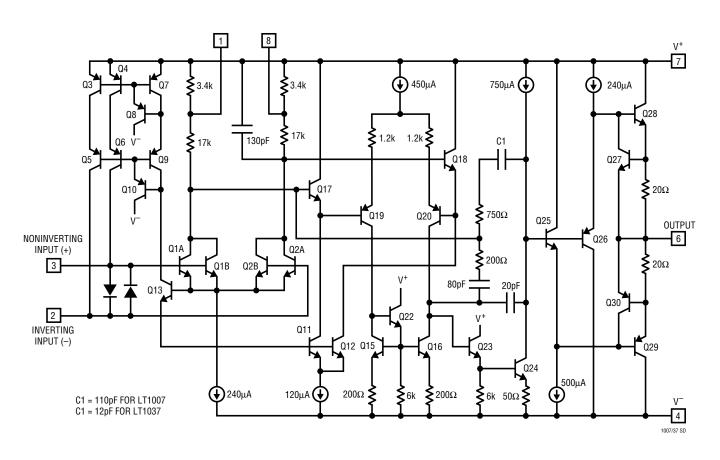
THE ADDITION OF THE LT1007 DOUBLES THE AMPLIFIER'S OUTPUT DRIVE TO ± 33 ma. Gain accuracy is 0.02%, slightly degraded compared to above because of self-heating of the Lt1037 under Load.

15V Ş 10µF 10Ω 100µF -+ 33Ω CHOPPED DETECTOR 2N2219A OUTPUT ഹന 100µF 15V пп **267**Ω* 50mA ξ 100µF 7 3 + 6 OUTPUT TO LT1007 **≶**392Ω* PHOTOCONDUCTIVE DEMODULATOR 2 Ò INFRARED DETECTOR IR RADIATION Ş Ċ 4 392k* HgCdTe type INFRA-RED ASSOCIATES, INC. SYNCHRONOUS -15V OPTICAL CHOPPER 13Ω AT 77°K Ş 392Ω* *1% METAL FILM ÷ 1007/37 TA08

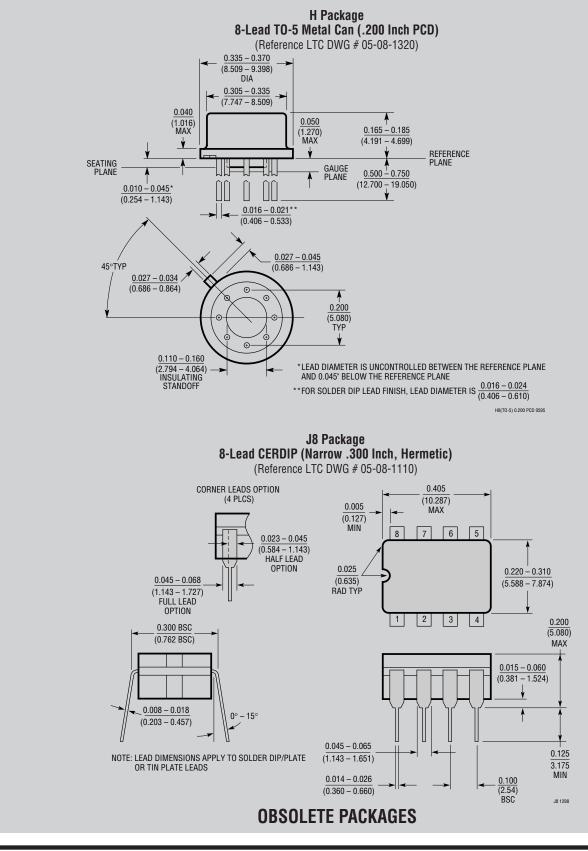

Infrared Detector Preamplifier


sn100737 100737fbs

1007/37 TA05


TYPICAL APPLICATIONS

Tape Head Amplifier



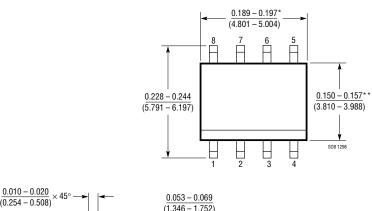
SIMPLIFIED SCHEMATIC

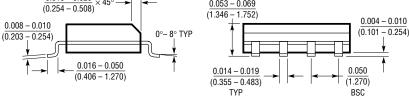
PACKAGE DESCRIPTION

ł

N8 1098

PACKAGE DESCRIPTION


0.400* (10.160) MAX 5 8 7 6 $0.255 \pm 0.015^{*}$ (6.477 ± 0.381) 4 1 2 3 0.130 ± 0.005 0.300 - 0.3250.045 - 0.065 $(\overline{3.302 \pm 0.127})$ (7.620 - 8.255) $(\overline{1.143} - 1.651)$ 0.065 (1.651) 0.009 - 0.015TYP 0.125 $(\overline{0.229 - 0.381})$ 0.020 (3.175) 0.325 +0.035 -0.015 MIN (0.508) 0.018 ± 0.003 MIN <u>0.100</u> (2.54) (8.255^{+0.889} -0.381) $(\overline{0.457 \pm 0.076})$


N8 Package 8-Lead PDIP (Narrow .300 Inch) (Reference LTC DWG # 05-08-1510)

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)

> S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch) (Reference LTC DWG # 05-08-1610)

BSC

*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE

** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE

TYPICAL APPLICATION

- 7.5V 2.5V 3 6 LT1007 LT1009 2 4 -7.5V REFERENCE 0UT 350Ω 15V BRIDGE Ş 3 OUTPUT **\$**301k⁺ ≶ LT1007 0V TO 10V ZERO 2 **₹** TRIM 4 1μF **≤**301k* 10k 7.5V -15V GAIN 7 €499Ω* TRIM 6 50k *RN60C FILM RESISTOR LT1007 3 THE LT1007 IS CAPABLE OF PROVIDING EXCITATION CURRENT DIRECTLY TO BIAS THE 350 Ω BRIDGE AT 5V. WITH ONLY 5V ACROSS 4 -THE BRIDGE (AS OPPOSED TO THE USUAL 10V) TOTAL POWER DISSIPATION AND BRIDGE WARM-UP DRIFT IS REDUCED. THE BRIDGE -7.5V OUTPUT SIGNAL IS HALVED, BUT THE LT1007 CAN AMPLIFY THE REDUCED SIGNAL ACCURATELY. 1007/37 TA09

Strain Gauge Signal Conditioner with Bridge Excitation

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1028	Ultralow Noise Precision Op Amp	Lowest Noise 0.85nV/√Hz
LT1115	Ultralow Noise, Low distortion Audio Op Amp	0.002% THD, Max Noise 1.2mV/ $\sqrt{\text{Hz}}$
LT1124/LT1125	Dual/Quad Low Noise, High Speed Precision Op Amps	Similar to LT1007
LT1126/LT1127	Dual/Quad Decompensated Low Noise, High Speed Precision Op Amps	Similar to LT1037
LT1498/LT1499	10MHz, 5V/µs, Dual/Quad Rail-to-Rail Input and Output Precision C-Load [™] Op Amps	

C-Load is a trademark of Linear Technology Corporation.

