

M62446AFP

6ch Electronic Volume with Tone Control

REJ03F0212-0201 Rev.2.01 Mar 31, 2008

Description

The M62446AFP is 6ch electronic volume with tone control. This IC is revised from M62446FP. The extended function of M62446AFP is volume level and tone control level. M62446AFP is easy to use more than M62446FP.

Features

6ch Electric volume

Volume level: 0 to -95 dB (1 dB/step)* <M62446FP: 0 to -79 dB (1 dB/step)>

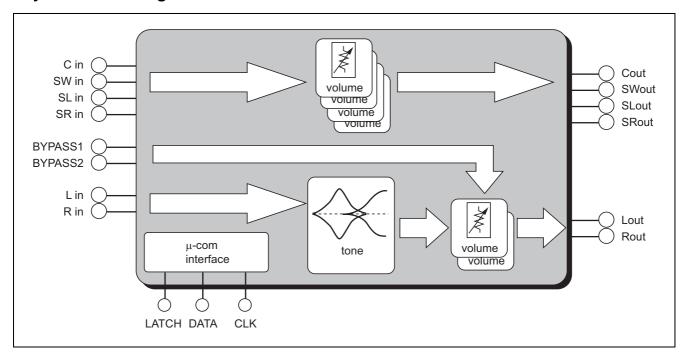
• Tone control

Bass/Treble: -14 dB to +14 dB (2 dB/step)* <M62446FP: -10 dB to +10 dB (2 dB/step)>

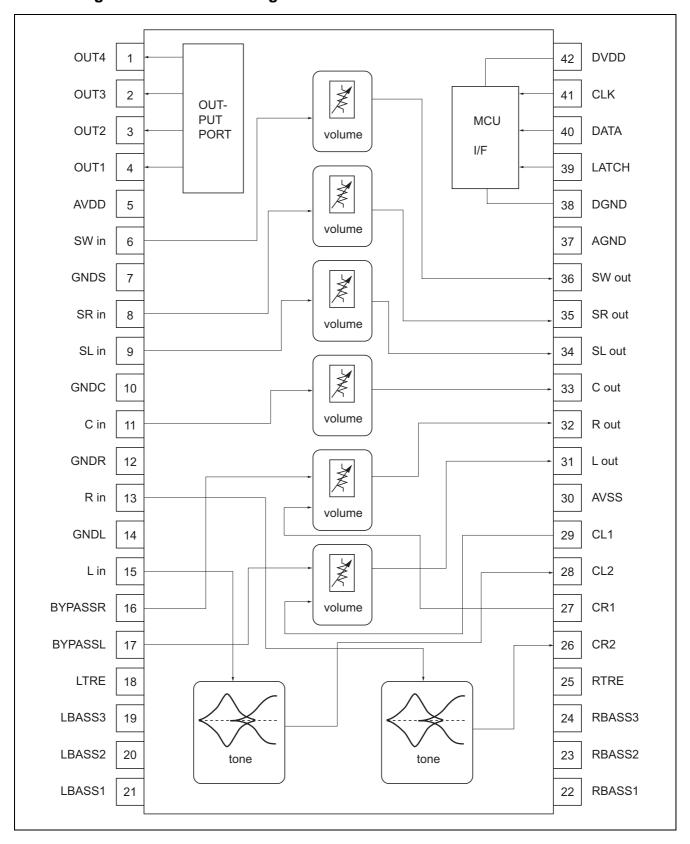
- Noise voltage: 1.5 μVrms <M62446FP: 2.2 μVrms>
- 4 Output ports
- Bypass mode is high quality sound.

Note: * is an extended function.

Application


DVD, Home Audio equipment, TV

Recommended Operating Conditions

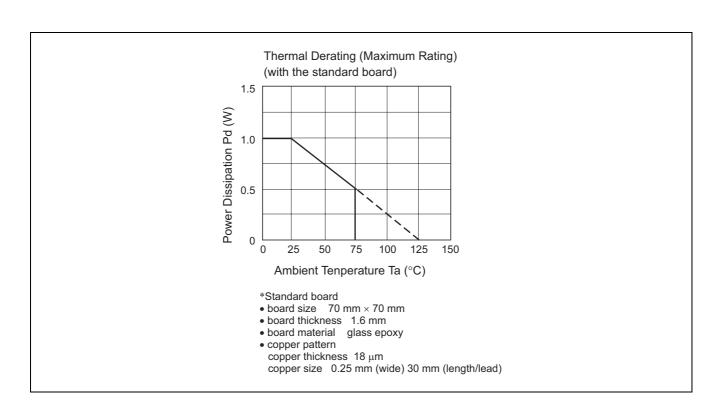

Supply voltage range: ± 4.5 to ± 7.5 V (analog), 4.5 V to 5.5 V (digital)

Recommended supply voltage: ±7.0 V (analog), 5.0 V (digital)

System Block Diagram

Pin Configuration and Block Diagram

Pin Description

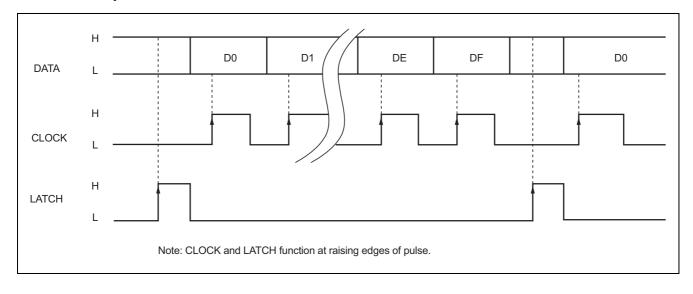

Pin No.	Symbol	Function	Circuit
1	OUT4	Port OUTPUT	OUTPUT: PMOS Transistor open drain
2	OUT3	_	→ DVDD (= 5V)
			DVDB (= 3V)
3	OUT2		
4	OUT1		1 to 4
5	AVDD	Analog positive power supply	+7 V
7	GNDS	GND	Connect to analog GND
10	GNDC		
12	GNDR		
14	GNDL		
6	SW in	Volume INPUT	
8	SR in		
9	SL in		6,8,9,11
11	C in		₹
36	SW out	Volume OUTPUT	18 to 22 k Ω 33,34,35,36
35	SR out		(Тур)
34	SL out		
33	C out		
13	R in	Tone INPUT	13,15
15	L in		70 kΩ
16	BYPASSR	L, R volume INPUT in	16,17 ————————————————————————————————————
17	BYPASSL	BYPASS mode	
31	L out	L OUTPUT	70 k Ω 18 to 22 k Ω
32	R out	R OUTPUT	(Typ) † (Typ) 31,32
18	LTRE	Tone treble cycle control	
			₹
25	RTRE		
			18,25
19	LBASS3	Tone bass cycle control	•
24	RBASS3	_	
20	LBASS2		2.3 kΩ (Typ)
23	RBASS2		(136)
21	LBASS1		10.24 20.22 24.22
26	RBASS1		19,24 20,23 21,22
22	CR2	Tone OUTPUT	26,28
28	CL2		20,20
27	CR1	L, R volume INPUT	27,29 • •
29	CL1		
31	L out	L OUTPUT	70 k Ω 18 to 22 k Ω 31,32
32	R out	R OUTPUT	(Typ) (Typ)
			'

M62446AFP

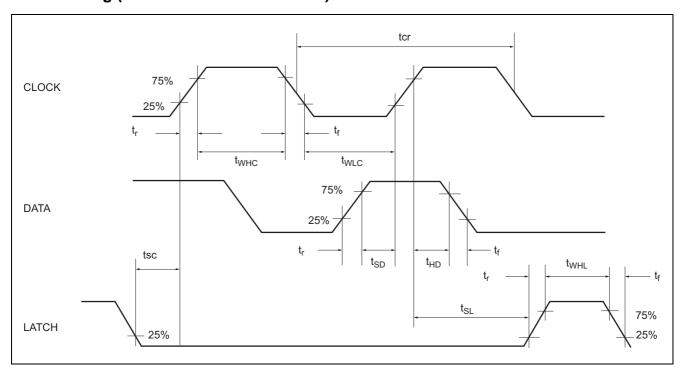
Pin No.	Symbol	Function	Circuit
30	AVSS	Analog negative power	-7 V
		supply	
37	AGND	Analog GND	
38	DGND	Digital GND	
39	LATCH	Latch INPUT	
40	DATA	Data INPUT	39,40,41
41	CLK	Clock INPUT forward data	INPUT: schmitt trigger type
42	DVDD	Digital power supply	+5 V

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Condition
Supply voltage	Vsupply	16	V	AVDD – AVSS
		7		DVDD – DGND
Power dissipation	Pd	1000	mW	Ta ≤ 25 °C
Thermal derating	Κθ	10	mW/°C	Ta > 25 °C
Operating temperature	Topr	-20 to +75	°C	
Storage temperature	Tstg	-40 to +125	°C	


Recommended Operating Condition

(Ta = 25°C, unless otherwise noted)


Item	Symbol	Min	Тур	Max	Unit	Condition
Analog positive supply voltage	AVDD	4.5	7.0	7.5	V	
Analog negative supply voltage	AVSS	-7.5	-7.0	-4.5	V	
Digital supply voltage	DVDD	4.5	5.0	5.5	V	
High-level input voltage	VIH	DVDD × 0.7	_	DVDD	V	
Low-level input voltage	VIL	DGND	_	DVDD × 0.3	V	

Note: $AVSS \le DGND < DVDD \le AVDD$

Relationship between Data and Clock and Latch

Data Timing (Recommended Conditions)

Digital Block Timing Regulation

			Limits		
Item	Symbol	Min	Тур	Max	Unit
CLOCK cycle time	t _{cr}	8	_	_	μ\$
CLOCK pulse width ("H" level)	t _{WHC}	3.2	_	_	
CLOCK pulse width ("L" level)	t _{WLC}	3.2	_	_	
CLOCK, DATA, LATCH rise time	t _r	_	_	0.8	
CLOCK, DATA, LATCH fall time	t _f	_	_	0.8	
DATA setup time	t _{SD}	1.6	_	_	
DATA hold time	t _{HD}	1.6	_	_	
LATCH setup time	t _{SL}	2	_	_	
LATCH pulse width	t _{WHL}	3.2	_	_	
CLOCK start time after LATCH	t _{SC}	3.2	_	_	

Digital Control Specification

Fore kinds of input format options are available by changing slot settings of DE and DF. (When the IC is powered up, the internal settings are not fixed.)

(1)

D01	D11	D21	D31	D41	D51	D61	D71	D81	D91	DA1	DB1	DC1	DD1	DE	DF
	TONE	CONT	Γ	1	2	3	4		TONE	CON	т		TONE		
	TLEBI				PUT P IT High				BASS			0	BYPASS : 1	0	0

(2)

D02	D12	D22	D32	D42	D52	D62	D72	D82	D92	DA2	DB2	DC2	DD2	DE	DF
		VOL	UME L	.ch					V	OLUM	E Rch			0	1

(3)

D03	D13	D23	D33	D43	D53	D63	D73	D83	D93	DA3	DB3	DC3	DD3	DE	DF
		VOL	UME (Cch					V	OLUM	E SWo	ch		1	0

(4)

D04	D14	D24	D34	D44	D54	D64	D74	D84	D94	DA4	DB4	DC4	DD4	DE	DF
		VOL	UME S	SLch					V	OLUM	E SRc	h		1	1

Setting Code

(1) Tone Control (Bass/Treble)

	Treble	D01	D11	D21	D31
ATT	Bass	D81	D91	DA1	DB1
* -	-14 dB	1	1	1	1
* -	-12 dB	1	1	0	1
-	-10 dB	1	1	1	0
	–8 dB	1	1	0	0
	–6 dB	1	0	1	1
	–4 dB	1	0	1	0
	–2 dB	1	0	0	1
	+0 dB	0	0	0	0
	+2 dB	0	0	0	1
	+4 dB	0	0	1	0
	+6 dB	0	0	1	1
	+8 dB	0	1	0	0
-	+10 dB	0	1	1	0
* -	+12 dB	0	1	0	1
* -	+14 dB	0	1	1	1

Note: * is an extended function.

(2) Port Output

D41 D51	
D61 D71	
Out: H	1
Out: L	0

(3) Bypass Control

DD1	
BYPASS	1
TONE	0

Note: Do not input other data than the above.

(4)-1 Volume (0 to -39 dB)

		D0X	D1X	D2X	D3X	D4X	D5X	D6X
ATT	Volume	D7X	D8X	D9X	DAX	DBX	DCX	DDX
	0 dB	0	0	0	0	0	0	0
	–1 dB	0	0	0	0	0	0	1
	–2 dB	0	0	0	0	0	1	0
	–3 dB	0	0	0	0	0	1	1
	–4 dB	0	0	0	0	1	0	0
	–5 dB	0	0	0	0	1	0	1
	–6 dB	0	0	0	0	1	1	0
	–7 dB	0	0	0	0	1	1	1
	–8 dB	0	0	0	1	0	0	0
	–9 dB	0	0	0	1	0	0	1
-	-10 dB	0	0	0	1	0	1	0
	-11 dB	0	0	0	1	0	1	1
	-12 dB	0	0	0	1	1	0	0
	-13 dB	0	0	0	1	1	0	1
-	-14 dB	0	0	0	1	1	1	0
-	-15 dB	0	0	0	1	1	1	1
-	-16 dB	0	0	1	0	0	0	0
-	-17 dB	0	0	1	0	0	0	1
-	-18 dB	0	0	1	0	0	1	0
-	-19 dB	0	0	1	0	0	1	1
-	-20 dB	0	0	1	0	1	0	0
-	-21 dB	0	0	1	0	1	0	1
-	-22 dB	0	0	1	0	1	1	0
-	-23 dB	0	0	1	0	1	1	1
_	-24 dB	0	0	1	1	0	0	0
_	-25 dB	0	0	1	1	0	0	1
	-26 dB	0	0	1	1	0	1	0
	-27 dB	0	0	1	1	0	1	1
	-28 dB	0	0	1	1	1	0	0
	-29 dB	0	0	1	1	1	0	1
	-30 dB	0	0	1	1	1	1	0
	-31 dB	0	0	1	1	1	1	1
	-32 dB	0	1	0	0	0	0	0
	-33 dB	0	1	0	0	0	0	1
	-34 dB	0	1	0	0	0	1	0
	-35 dB	0	1	0	0	0	1	1
	-36 dB	0	1	0	0	1	0	0
	-37 dB	0	1	0	0	1	0	1
	-38 dB	0	1	0	0	1	1	0
_	-39 dB	0	1	0	0	1	1	1

Note: Do not input other data than the above.

(4)-2 Volume (–40 to $-\infty$ dB)

		D0X	D1X	D2X	D3X	D4X	D5X	D6X
ATT	Volume	D7X	D8X	D9X	DAX	DBX	DCX	DDX
-	-40 dB	0	1	0	1	0	0	0
-	-41 dB	0	1	0	1	0	0	1
-	-42 dB	0	1	0	1	0	1	0
-	-43 dB	0	1	0	1	0	1	1
-	-44 dB	0	1	0	1	1	0	0
-	-45 dB	0	1	0	1	1	0	1
-	-46 dB	0	1	0	1	1	1	0
-	-47 dB	0	1	0	1	1	1	1
-	-48 dB	0	1	1	0	0	0	0
-	-49 dB	0	1	1	0	0	0	1
-	-50 dB	0	1	1	0	0	1	0
-	-51 dB	0	1	1	0	0	1	1
	-52 dB	0	1	1	0	1	0	0
-	-53 dB	0	1	1	0	1	0	1
-	-54 dB	0	1	1	0	1	1	0
-	-55 dB	0	1	1	0	1	1	1
-	-56 dB	0	1	1	1	0	0	0
-	-57 dB	0	1	1	1	0	0	1
-	-58 dB	0	1	1	1	0	1	0
-	-59 dB	0	1	1	1	0	1	1
-	-60 dB	0	1	1	1	1	0	0
-	-61 dB	0	1	1	1	1	0	1
-	-62 dB	0	1	1	1	1	1	0
-	-63 dB	0	1	1	1	1	1	1
-	-64 dB	1	0	0	0	0	0	0
-	-65 dB	1	0	0	0	0	0	1
-	-66 dB	1	0	0	0	0	1	0
-	-67 dB	1	0	0	0	0	1	1
-	-68 dB	1	0	0	0	1	0	0
-	-69 dB	1	0	0	0	1	0	1
	-70 dB	1	0	0	0	1	1	0
	-71 dB	1	0	0	0	1	1	1
	-72 dB	1	0	0	1	0	0	0
	-73 dB	1	0	0	1	0	0	1
	-74 dB	1	0	0	1	0	1	0
	-75 dB	1	0	0	1	0	1	1
	-76 dB	1	0	0	1	1	0	0
	-77 dB	1	0	0	1	1	0	1
_	-78 dB	1	0	0	1	1	1	0
_	-79 dB	1	0	0	1	1	1	1
	–∞ dB	1	0	1	0	0	0	0

Note: Do not input other data than the above.

(4)-3 VOLUME (-80 to $-\infty$ dB)

This is an extended function from M62446FP.

		D0X	D1X	D2X	D3X	D4X	D5X	D6X
ATT	Volume	D7X	D8X	D9X	DAX	DBX	DCX	DDX
-	–∞ dB	1	0	1	0	0	0	1
-	–∞ dB	1	0	1	0	0	1	0
-	–∞ dB	1	0	1	0	0	1	1
	▼							
-	–∞ dB	1	0	1	1	1	1	0
-	–∞ dB	1	0	1	1	1	1	1
_	-80 dB	1	1	0	0	0	0	0
_	-81 dB	1	1	0	0	0	0	1
_	-82 dB	1	1	0	0	0	1	0
_	-83 dB	1	1	0	0	0	1	1
_	-84 dB	1	1	0	0	1	0	0
_	-85 dB	1	1	0	0	1	0	1
_	-86 dB	1	1	0	0	1	1	0
_	-87 dB	1	1	0	0	1	1	1
_	-88 dB	1	1	0	1	0	0	0
_	-89 dB	1	1	0	1	0	0	1
_	-90 dB	1	1	0	1	0	1	0
_	·91 dB	1	1	0	1	0	1	1
_	·92 dB	1	1	0	1	1	0	0
_	·93 dB	1	1	0	1	1	0	1
_	-94 dB	1	1	0	1	1	1	0
_	·95 dB	1	1	0	1	1	1	1
-	–∞ dB	1	1	1	0	0	0	0
-	–∞ dB	1	1	1	0	0	0	1
	▼							
-	–∞ dB	1	1	1	1	1	1	0
-	–∞ dB	1	1	1	1	1	1	1

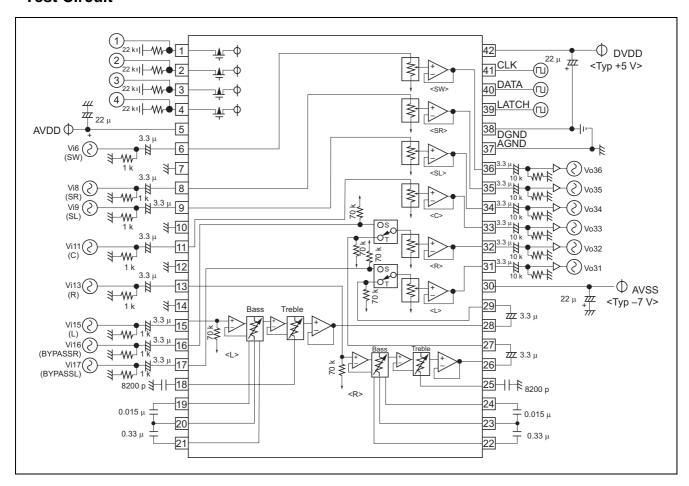
Electrical Characteristics

 $(Ta=25^{\circ}C,\,AVDD/AVSS/DVDD=7/-7\,\,V/5\,\,V,\,f=1\,\,kHz,\,unless\,\,otherwise\,\,noted.$ $Rg=1\,\,k\Omega,\,RL=10\,\,k\Omega,\,TONE\,\,CONTROL\,\bullet\,\,VOL\,\,are\,\,set\,\,to\,\,0\,\,dB/FLAT.)$

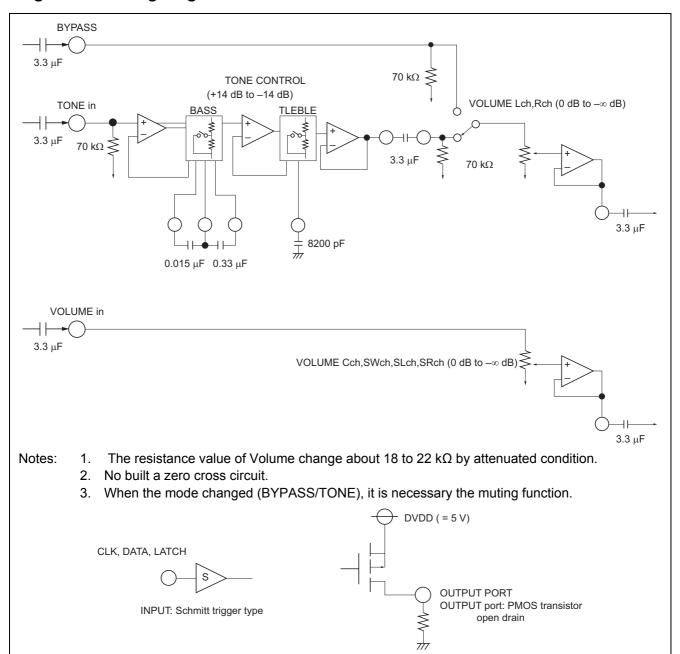
(1) Power Supply Characteristics

		Limits				
Item	Symbol	Min	Тур	Max	Unit	Test Condition
Analog positive circuit current	Aldd	_	22	35	mA	Current at pin 5 No signal
Analog negative circuit current	Alss	_	22	35	mA	Current at pin 30 No signal
Digital circuit current	Dldd	_	1.0	2.0	mA	Current at pin 42 No signal

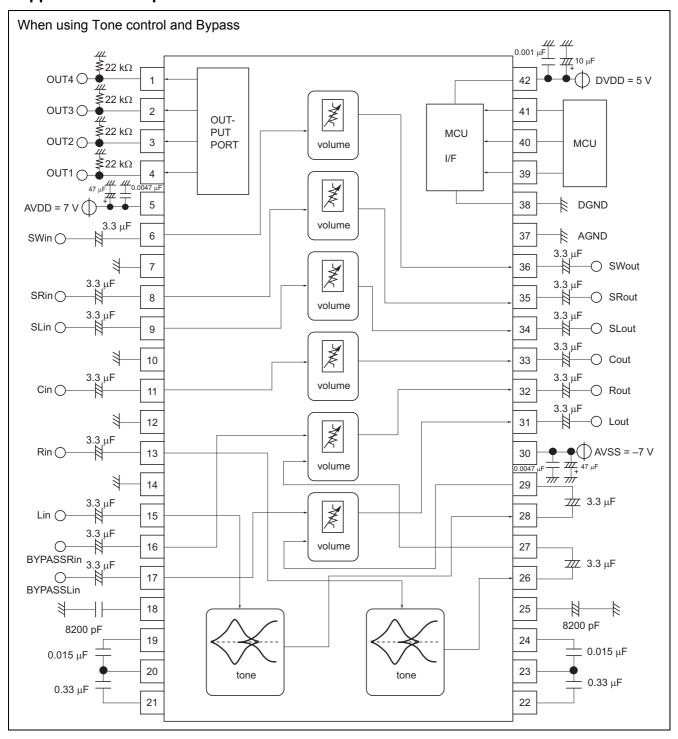
(2) Input/Output Characteristics


		Limits				
Item	Symbol	Min	Тур	Max	Unit	Test Condition
Input resistance	Ri	35	70	150	kΩ	13, 15, 16, 17, 27, 29 pin
Maximum output voltage	VOM	3.0	4.2	_	Vrms	6, 8, 9, 11, 13, 15, 16, 17 pin INPUT
						31 to 36 pin OUTPUT
						THD = 1%
Pass gain	Gv	-2.0	0	2.0	dB	Vi = 0.2 Vrms, FLAT
						8, 9, 11, 13, 15, 16, 17 pin INPUT
						31 to 36 pin OUTPUT
Distortion	THD	_	0.002	0.09	%	BW = 400 to 30 kHz
						Vi = 0.2 Vrms, RL = 10 k Ω
Output noise voltage	Vn (VOL)	_	1.5	6	μVrms	31 to 36 pin, Rg = 0 k Ω , JIS-A,
						VOL = 0 dB
	Vn (tone)	_	5	20	μVrms	31, 32 pin
						JIS-A, VOL = 0 dB
Maximum attenuation	ATTmax	_	-100	-95	dB	31 to 36 pin
						JIS-A, VOL = $-\infty$ dB
Volume gain between	Dvol	-1.5	0	1.5	dB	
channels						
Crosstalk between	CT	_	-80	-65	dB	Vo = 0.5 Vrms, RL = 10 k Ω , JIS-A,
channels						$Rg = 1 k\Omega$
Port output current	IL	0.2		_	mA	

(3) Tone Control Characteristics


		Limits				
Item	Symbol	Min	Тур	Max	Unit	Test Condition
Tone control voltage gain	*T +14 dB	12	14	16	dB	Vo = 0.2 Vrms,
	*T +12 dB	10	12	14	dB	TREBLE (f = 10 kHz),
	T +10 dB	8	10	12	dB	BASS (f = 100 Hz),
	T +8 dB	6	8	10	dB	
	T +6 dB	4.5	6	7.5	dB	Voltage gain
	T +4 dB	2.5	4	5.5	dB	(Input to pin 13, 15
	T +2 dB	1	2	3	dB	Output from pin 31, 32)
	T –2 dB	-3	-2	-1	dB	
	T –4 dB	-5.5	-4	-2.5	dB	INPUT 13, 15 pin
	T –6 dB	-7.5	-6	-4.5	dB	OUTPUT 31, 32 pin
	T –8 dB	-10	-8	-6	dB	
	T –10 dB	-12	-10	-8	dB	
	*T –12 dB	-14	-12	-10	dB	
	*T –14 dB	-16	-14	-12	dB	
Balance between channel	BALT	-1.5	0	+1.5	dB	Input 13, 15 pin Vo = 0.2 Vrms
						Output 31, 32 pin

Note: * is an extended function.


Test Circuit

Signal Processing Diagram

Application Example

Package Dimensions

(MMP) 42P2R-A Plastic 42pin 450mil SSOP EIAJ Package Code SSOP42-P-450-0.80 Weight(g) 0.63 JEDEC Code Lead Material е Alloy 42/Cu Alloy 2 **6**1 뿐 Ш Recommended Mount Pad F Dimension in Millimeters Symbol Min Nom Max Α 2.4 1 0.05 **A**1 A2 2.0 G 0.35 0.5 0.4 b 0.13 0.15 D 17.3 17.5 17.7 **A**1 Ε 8.2 8.4 8.6 е 8.0 12.23 11.63 11.93 HE 0.3 0.5 0.7 1.765 L1 Z 0.75 Z1 0.9 0.15 У C θ 0° 10° 0.5 b2 Detail G Detail F 11.43

e1

1.27

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information cinitarian in this document nor grants any license to any intellectual property girbs or any other rights of representations with respect to the information in this document in this document or the purpose of the respect to the information in this document in the property of the control intellectual property or the control in

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510