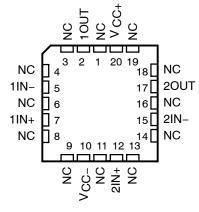
- Short-Circuit Protection
- Wide Common-Mode and Differential Voltage Ranges
- No Frequency Compensation Required
- Low Power Consumption
- No Latch-Up
- Designed to Be Interchangeable With Motorola MC1558/MC1458 and Signetics S5558/N5558

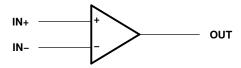

description/ordering information

The MC1458 and MC1558 are dual general-purpose operational amplifiers, with each half electrically similar to the μ A741, except that offset null capability is not provided.

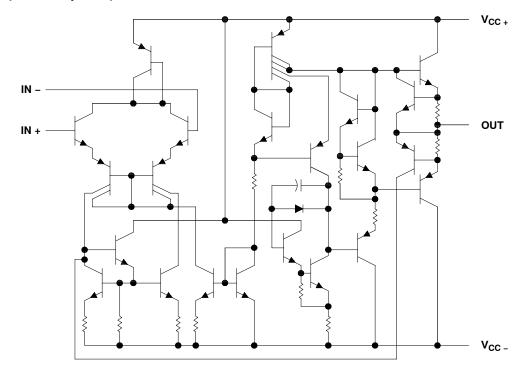
The high-common-mode input voltage range and the absence of latch-up make these amplifiers ideal for voltage-follower applications. The devices are short-circuit protected and the internal frequency compensation ensures stability without external components.

MC1558 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection


ORDERING INFORMATION

T _A	V _{IO} max AT 25°C	PACKA	GE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING
		PDIP (P)	Tube	MC1458P	MC1458P
0°C to 70°C	6 mV	0010 (D)	Tube	MC1458D	MO1150
		SOIC (D)	Tape and reel	MC1458DR	MC1458
		SOP (PS)	Tape and reel	MC1458PSR	M1458
		CDIP (JG)	Tube	MC1558JG	MC1558JG
-55°C to 125°C	5 mV	CDIP (JGB)	Tube	MC1558JGB	MC1558JGB
		LCCC (FK)	Tube	MC1558FK	MC1558FK


[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

SLOS069C - FEBRUARY 1971 - REVISED AUGUST 2010

symbol (each amplifier)

schematic (each amplifier)

MC1458, MC1558 DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

SLOS069C - FEBRUARY 1971 - REVISED AUGUST 2010

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC+} (see Note 1):	MC1458	
	MC1558	
Supply voltage, V _{CC} (see Note 1):	MC1458	
	MC1558	
Differential input voltage, V _{ID} (see No	ote 2)	
	otes ¹ and 3)	
	Note 4)	
	·e, T」 ´	
	ee Notes 5 and 6): D package	
5 1 , 5,11	P package	
	PS package	
Package thermal impedance, $\theta_{\rm JC}$ (se	ee Notes 7 and 8): FK package	
5 1 7 50 (JG package	
Case temperature for 60 seconds: F	K package	
•) from case for 10 seconds: JG package	
Lead temperature 1,6 mm (1/16 inch	rom case for 60 seconds: D, P, or PS package	је 260°С
Storage temperature range, T _{stq}	,	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC+} and V_{CC-}.
 - 2. Differential voltages are at IN+ with respect to IN-.
 - 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
 - 4. The output can be shorted to ground or either power supply. For the MC1558 only, the unlimited duration of the short circuit applies at (or below) 125°C case temperature or 70°C free-air temperature.
 - 5. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
 - 6. The package thermal impedance is calculated in accordance with JESD 51-7.
 - 7. Maximum power dissipation is a function of $T_J(max)$, θ_{JC} , and T_C . The maximum allowable power dissipation at any allowable case temperature is $P_D = (T_J(max) T_C)/\theta_{JC}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
 - 8. The package thermal impedance is calculated in accordance with MIL-STD-883.

recommended operating conditions

			MIN	MAX	UNIT
V _{CC±}	Supply voltage		±5	±15	V
т.	Operating free air temperature range	MC1458	0	70	°C
1A	Operating free-air temperature range	MC1558	-55	125	

MC1458, MC1558 DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

SLOS069C - FEBRUARY 1971 - REVISED AUGUST 2010

electrical characteristics at specified free-air temperature, $V_{\text{CC}\pm}$ = $\pm 15~\text{V}$

	DADAMETED	TEC	T CONDITION:	N	/IC1458		ľ	MC1558		UNIT		
	PARAMETER	IES	I CONDITION	51	MIN	TYP	MAX	MIN	TYP	MAX	UNII	
V_{IO}	Input offset voltage	V _O = 0		25°C		1	6		1	5	mV	
۷IO	input onset voltage	ΛΟ = 0		Full range			7.5			6	IIIV	
La	Input offset current	V _O = 0		25°C		20	200		20	200	nA	
I _{IO}	input onset current	ΛΟ = 0		Full range			300			500	ПА	
l	Input bias current	V _O = 0		25°C		80	500		80	500	nA	
I _{IB}	input bias current	ν0 = 0		Full range			800			1500	ПА	
V	Common-mode input			25°C	±12	±13		±12	±13		V	
V _{ICR}	voltage range			Full range	±12			±12			V	
		$R_L = 10 \text{ k}\Omega$		25°C	±12	±14		±12	±14			
V	Maximum peak output	$R_L \ge 10 \text{ k}\Omega$		Full range	±12			±11			V	
V_{OM}	voltage swing	$R_L = 2 k\Omega$		25°C	±10	±13		±10	±13		V	
		$R_L \ge 2 k\Omega$		Full range	±10			±10				
	Large-signal differential	D > 01:0		25°C	20	200		50	200		\ //\ /	
A_{VD}	voltage amplification	$R_L \ge 2 k\Omega$,	$V_O = \pm 10 \text{ V}$	Full range	15			25			V/mV	
B _{OM}	Maximum-output-swing bandwidth (closed loop)	$R_L = 2 k\Omega,$ $A_{VD} = 1,$	$V_O \ge \pm 10 \text{ V},$ THD $\ge 5\%$	25°C		14			14		kHz	
B ₁	Unity-gain bandwidth			25°C		1			1		MHz	
фm	Phase margin	A _{VD} = 1		25°C		65			65		deg	
<u> </u>	Gain margin			25°C		11			11		dB	
r _i	Input resistance			25°C	0.3	2		0.3*	2		МΩ	
r _o	Output resistance	V _O = 0,	See Note 9	25°C		75			75		Ω	
C _i	Input capacitance			25°C		1.4			1.4		pF	
z _{ic}	Common-mode input impedance	f = 20 Hz		25°C		200			200		МΩ	
01400	Common-mode	V _{IC} = V _{ICR} m	in,	25°C	70	90		70	90			
CMRR	rejection ratio	V _O = 0		Full range	70			70			dB	
k _{SVS}	Supply-voltage sensitivity	V _{CC} = ±9 V to	o ±15 V,	25°C		30	150		30	150	μV/V	
1.373	$(\Delta V_{IO}/\Delta V_{CC})$	$V_O = 0$		Full range			150			150	μι,	
V _n	Equivalent input noise voltage (closed loop)	A _{VD} = 100, f = 1 kHz,	R _S = 0, BW = 1 Hz	25°C		45			45		nV/√ Hz	
I _{OS}	Short-circuit output current			25°C		±25	±40		±25	±40	mA	
	Supply current	V 0 N:	la a d	25°C		3.4	5.6		3.4	5	^	
I _{CC}	(both amplifiers)	$v_0 = 0$, No	$V_O = 0$, No load				6.6			6.6	mA	
	Total power dissipation	V 0 11	اممط	25°C		100	170		100	150	\4/	
P_D	(both amplifiers)	$V_O = 0$, No	load	Full range			200			200	mW	
V _{O1} /V _{O2}	Crosstalk attenuation			25°C		120			120		dB	

^{*}On products compliant to MIL-PRF-38535, this parameter is not production tested.

NOTE 9: This typical value applies only at frequencies above a few hundred hertz because of the effect of drift and thermal feedback.

[†] All characteristics are specified under open-loop operating conditions with zero common-mode input voltage, unless otherwise specified. Full range for MC1458 is 0°C to 70°C and for MC1558 is –55°C to 125°C.

MC1458, MC1558 DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

SLOS069C - FEBRUARY 1971 - REVISED AUGUST 2010

operating characteristics, $V_{CC\pm}$ = ± 15 V, C_L = 100 pF, T_A = 25°C (see Figure 1)

DADAMETED		TEOT 001	UDITIONS	N	/IC1458		MC1558			UNIT
	PARAMETER	TEST CO	MIN	TYP	MAX	MIN	TYP	MAX	UNII	
T	Rise time	V _I = 20 mV,	$R_L = 2 k\Omega$,		0.3			0.3		μs
τ _r	Overshoot factor	V _I = 20 mV,	$R_L = 2 k\Omega$		5			5		%
SR	Slew rate at unity gain	V _I = 10 V,	$R_L = 2 k\Omega$		0.5			0.5		V/μs

PARAMETER MEASUREMENT INFORMATION

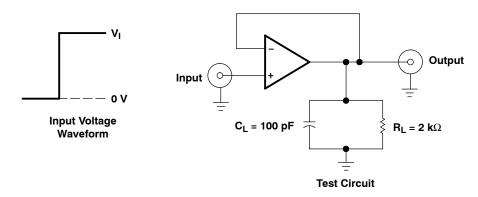


Figure 1. Rise-Time, Overshoot, and Slew-Rate Waveform and Test Circuit

www.ti.com 14-Oct-2022

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-9760301Q2A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 9760301Q2A MC1558FKB	Samples
5962-9760301QPA	ACTIVE	CDIP	JG	8	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	9760301QPA MC1558	Samples
MC1458DR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	MC1458	Samples
MC1458DRG4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	MC1458	Samples
MC1458P	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	MC1458P	Samples
MC1458PE4	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	MC1458P	Samples
MC1458PSR	ACTIVE	SO	PS	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	M1458	Samples
MC1558FKB	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 9760301Q2A MC1558FKB	Samples
MC1558JG	ACTIVE	CDIP	JG	8	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	MC1558JG	Samples
MC1558JGB	ACTIVE	CDIP	JG	8	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	9760301QPA MC1558	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

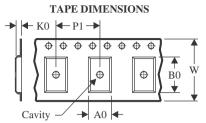
⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

PACKAGE OPTION ADDENDUM

www.ti.com 14-Oct-2022

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Aug-2022

TAPE AND REEL INFORMATION

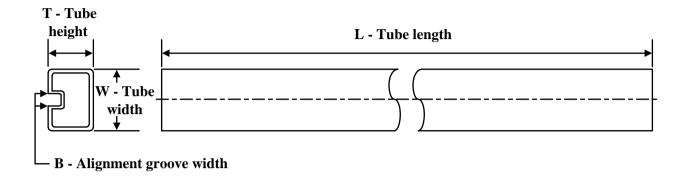
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	_	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MC1458DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
MC1458DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
MC1458DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
MC1458DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
MC1458PSR	so	PS	8	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1

www.ti.com 9-Aug-2022

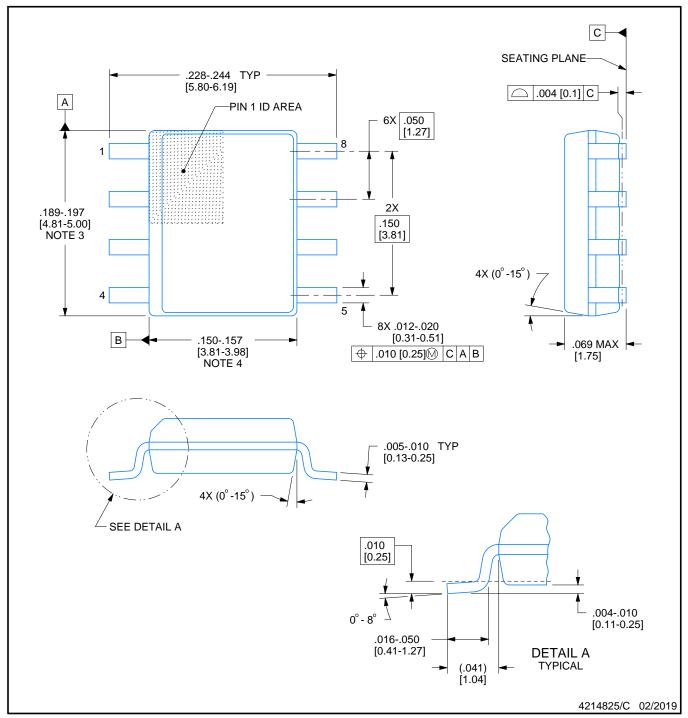

*All dimensions are nominal

7 til dilliononono di o mominar							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MC1458DR	SOIC	D	8	2500	356.0	356.0	35.0
MC1458DR	SOIC	D	8	2500	340.5	336.1	25.0
MC1458DR	SOIC	D	8	2500	340.5	336.1	25.0
MC1458DR	SOIC	D	8	2500	356.0	356.0	35.0
MC1458PSR	so	PS	8	2000	356.0	356.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Aug-2022

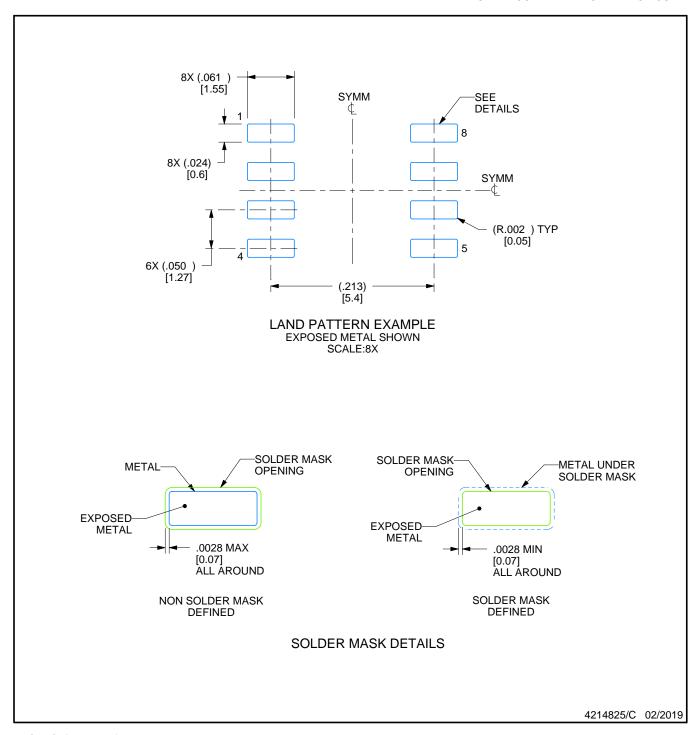
TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
5962-9760301Q2A	FK	LCCC	20	1	506.98	12.06	2030	NA
MC1458P	Р	PDIP	8	50	506	13.97	11230	4.32
MC1458PE4	Р	PDIP	8	50	506	13.97	11230	4.32
MC1558FKB	FK	LCCC	20	1	506.98	12.06	2030	NA

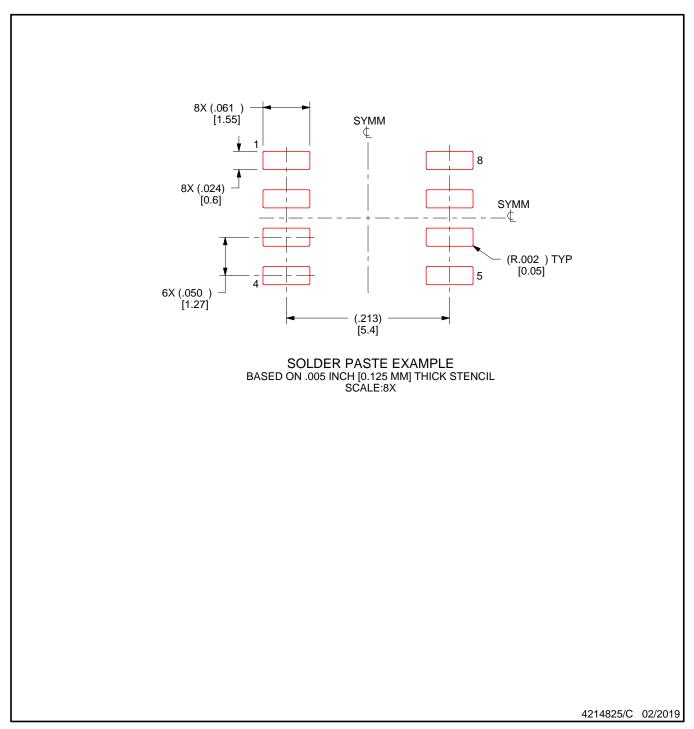
SMALL OUTLINE INTEGRATED CIRCUIT



NOTES:

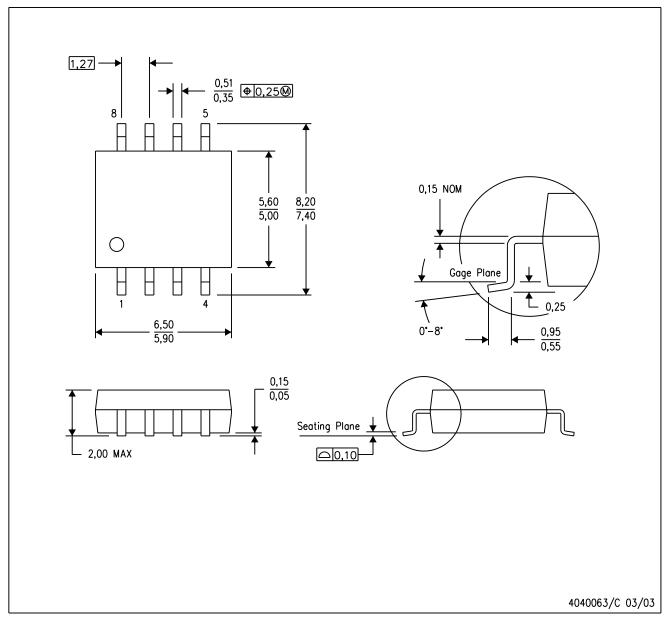
- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

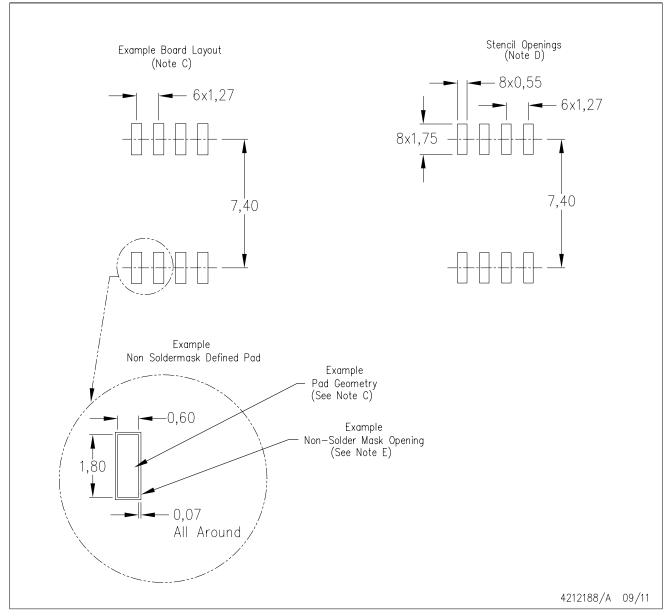
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.


SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

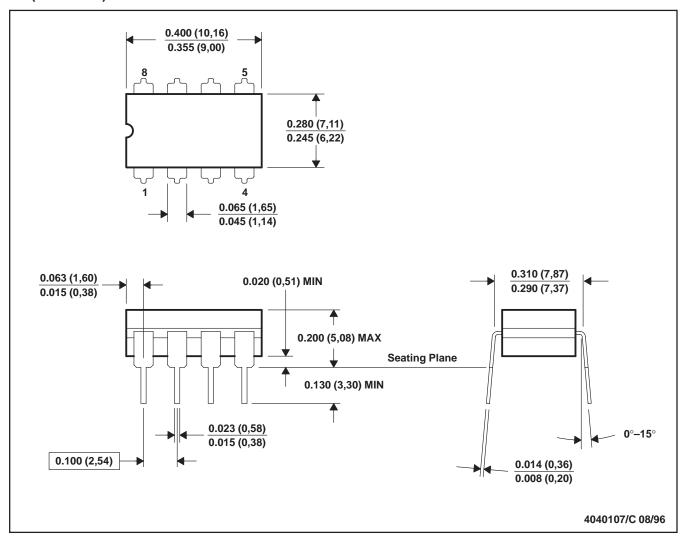
NOTES: A. All linear dimensions are in millimeters.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PS (R-PDSO-G8)

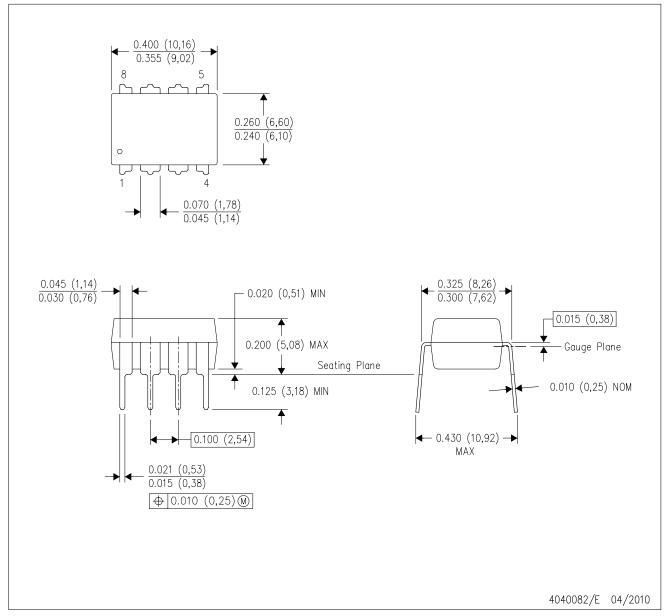
PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE



NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated