NPN - MPS650, MPS651; PNP - MPS750, MPS751

Amplifier Transistors

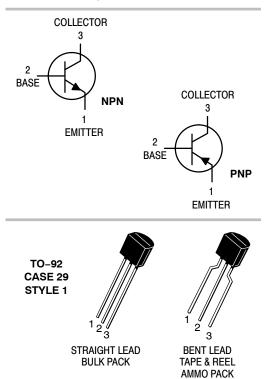
Features

• These are Pb-Free Devices*

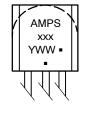
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage MPS650; MPS750 MPS651; MPS751	V _{CE}	40 60	Vdc
Collector – Base Voltage MPS650; MPS750 MPS651; MPS751	V _{CB}	60 80	Vdc
Emitter – Base Voltage	V _{EB}	5.0	Vdc
Collector Current – Continuous	Ι _C	2.0	Adc
Total Power Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	V _{CE}	200	°C/W
Thermal Resistance, Junction-to-Case	V _{CB}	83.3	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.



ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

 xxx
 = 650, 750, 651, or 751

 A
 = Assembly Location

 Y
 = Year

 WW
 = Work Week

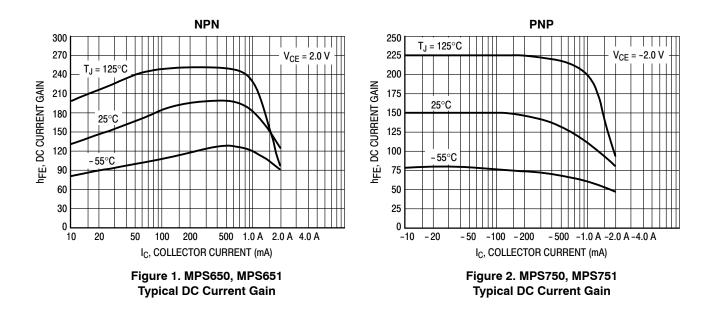
 •
 = Pb-Free Package

(Note: Microdot may be in either location)

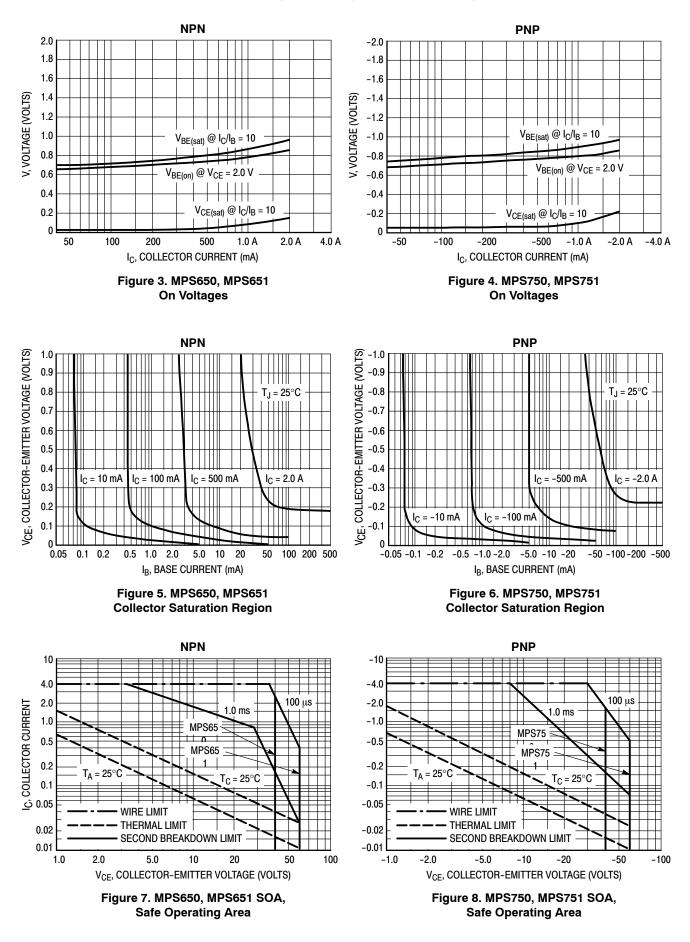
ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


NPN - MPS650, MPS651; PNP - MPS750, MPS751

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)


Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage (Note 1) ($I_C = 10 \text{ mAdc}, I_B = 0$)	MPS650, MPS750 MPS651, MPS751	V _{(BR)CEO}	40 60		Vdc
Collector – Base Breakdown Voltage ($I_C = 100 \ \mu Adc, I_E = 0$)	MPS650, MPS750 MPS651, MPS751	V _{(BR)CBO}	60 80		Vdc
Emitter – Base Breakdown Voltage $(I_C = 0, I_E = 10 \ \mu Adc)$		V _{(BR)EBO}	5.0	-	Vdc
Collector Cutoff Current $(V_{CB} = 60 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 80 \text{ Vdc}, I_E = 0)$	MPS650, MPS750 MPS651, MPS751	I _{CBO}		0.1 0.1	μAdc
Emitter Cutoff Current ($V_{EB} = 4.0 \text{ V}, I_C = 0$)		I _{EBO}	-	0.1	μAdc
ON CHARACTERISTICS (Note 1)			•		
$ \begin{array}{l} \text{DC Current Gain} \\ (I_C = 50 \text{ mA}, \text{V}_{CE} = 2.0 \text{ V}) \\ (I_C = 500 \text{ mA}, \text{V}_{CE} = 2.0 \text{ V}) \\ (I_C = 1.0 \text{ A}, \text{V}_{CE} = 2.0 \text{ V}) \\ (I_C = 2.0 \text{ A}, \text{V}_{CE} = 2.0 \text{ V}) \end{array} $		h _{FE}	75 75 75 40	- - - -	_
Collector – Emitter Saturation Voltage ($I_C = 2.0 \text{ A}, I_B = 200 \text{ mA}$) ($I_C = 1.0 \text{ A}, I_B = 100 \text{ mA}$)		V _{CE(sat)}		0.5 0.3	Vdc
Base–Emitter On Voltage (I _C = 1.0 A, V _{CE} = 2.0 V)		$V_{BE(on)}$	-	1.0	Vdc
Base – Emitter Saturation Voltage (I _C = 1.0 A, I _B = 100 mA)		V _{BE(sat)}	-	1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS	I			I	1
Current – Gain – Bandwidth Product (Note 2) (I _C = 50 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)		f _T	75	-	MHz

1. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle = 2.0%.

2. f_T is defined as the frequency at which $|h_{fe}|$ extrapolates to unity.

NPN - MPS650, MPS651; PNP - MPS750, MPS751

NPN – MPS650, MPS651; PNP – MPS750, MPS751

ORDERING INFORMATION

Device	Package	Shipping [†]	
MPS650G	TO-92 (Pb-Free)	5000 Units / Bulk	
MPS650RLRAG	TO–92 (Pb–Free)	2000 / Tape & Reel	
MPS650ZL1G	TO–92 (Pb–Free)	2000 / Tape & Ammunition	
MPS651G	TO–92 (Pb–Free)	5000 Units / Bulk	
MPS651RLRAG	TO–92 (Pb–Free)	2000 / Tape & Reel	
MPS651RLRMG	TO–92 (Pb–Free)	2000 / Tape & Ammunition	
MPS750G	TO–92 (Pb–Free)	5000 Units / Bulk	
MPS750RLRAG	TO–92 (Pb–Free)	2000 / Tape & Reel	
MPS750RLRPG	TO–92 (Pb–Free)	2000 / Tape & Ammunition	
MPS751G	TO–92 (Pb–Free)	5000 Units / Bulk	
MPS751RLRAG	TO–92 (Pb–Free)	2000 / Tape & Reel	
MPS751RLRPG	TO–92 (Pb–Free)	2000 / Tape & Ammunition	
MPS751ZL1G	TO–92 (Pb–Free)	2000 / Tape & Ammunition	

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-11 **ISSUE AM** NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI STRAIGHT LEAD B Y14.5M, 1982. CONTROLLING DIMENSION: INCH. **BULK PACK** 2 CONTOUR OF PACKAGE BEYOND DIMENSION R 3. IS UNCONTROLLED. LEAD DIMENSION IS UNCONTROLLED IN P AND 4. P BEYOND DIMENSION K MINIMUM. L INCHES MILLIMETERS SEATING κ DIM MIN MAX MIN MAX A 0.175 0.205 4.45 5.20 **B** 0.170 0.210 4.32 5.33 C 0.165 0.125 3.18 4.19 **D** 0.016 0.021 0.407 0.533 D G 0.045 0.055 1.15 1.39 H 0.095 0.105 2.42 2.66 G J 0.015 0.020 0.39 0.50 K 0.500 12.70 L 0.250 6.35 N 0.080 C 0.105 2.04 2.66 Ρ 0.100 2.54 SECTION X-X R 0.115 2.93 V 0.135 3.43 NOTES: BENT LEAD DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. В R 1. TAPE & REEL CONTROLLING DIMENSION: MILLIMETERS. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. AMMO PACK 3. 4 LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM. P T SEATING PLANE MILLIMETERS DIM MIN MAX A 4.45 5.20 в 4.32 5.33 С 3.18 4.19 D 0.40 0.54 n G 2 40 2 80 G J 0.39 0.50 K 12.70 Ν 2.04 2 66 Ρ 1.50 4.00 C R 2.93 SECTION X-X 3.43 STYLE 1: PIN 1. EMITTER BASE 2. COLLECTOR 3.

ON Semiconductor and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemic.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its product/patent coverage may be accessed at www.onsemic.com/site/pdf/Patent-Marking.pdf. SCILLC particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death massociated with such unintended or unauthorized use, even if such claim alleges that SCILLC was neg

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

For additional information, please contact your local Sales Representative