MUR4100E is a Preferred Device

SWITCHMODE [™] **Power Rectifiers**

Ultrafast "E" Series with High Reverse Energy Capability

These state-of-the-art devices are designed for use in switching power supplies, inverters and as free wheeling diodes.

Features

- 20 mJ Avalanche Energy Guaranteed
- Excellent Protection Against Voltage Transients in Switching Inductive Load Circuits
- Ultrafast 75 Nanosecond Recovery Time
- 175°C Operating Junction Temperature
- Low Forward Voltage
- Low Leakage Current
- High Temperature Glass Passivated Junction
- Reverse Voltage to 1000 V
- These are Pb-Free Devices

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 1.1 Gram (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 220°C Max for 10 Seconds, 1/16" from Case
- Polarity: Cathode Indicated by Polarity Band

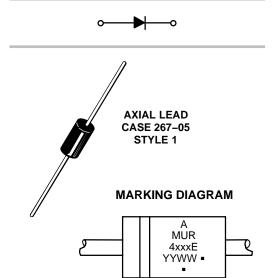
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage MUR490E MUR4100E	V _{RRM} V _{RWM} V _R	900 1000	V
Average Rectified Forward Current (Sq. Wave) (Mounting Method #3 Per Note 1)	I _{F(AV)}	4.0 @ T _A = 35°C	Α
Nonrepetitive Peak Surge Current (Surge Applied at Rated Load Conditions, Halfwave, Single Phase, 60 Hz)	I _{FSM}	70	A
Operating Junction Storage Temperature	T _J , T _{stg}	-65 to +175	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	See Note 1	°C/W

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.


*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor®

http://onsemi.com

ULTRAFAST RECTIFIERS 4.0 AMPS, 900 – 1000 VOLTS

A = Assembly Location MUR4xxxE = Device Code

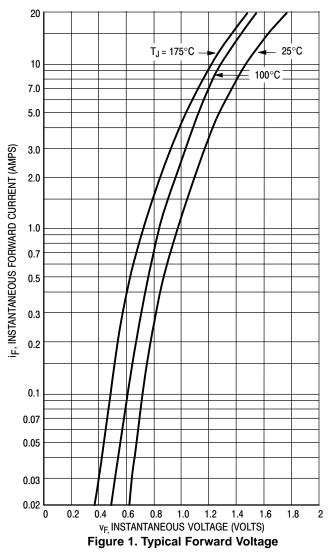
xxx = 90 or 100

YY = Year
WW = Work Week
■ Pb-Free Package
(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
MUR490E	Axial Lead*	500 Units / Bulk
MUR4100E	Axial Lead*	500 Units / Bulk
MUR4100EG	Axial Lead*	500 Units / Bulk
MUR4100ERL	Axial Lead*	1,500/Tape & Reel
MUR4100ERLG	Axial Lead*	1,500/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


*This package is inherently Pb–Free.

Preferred devices are recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS

Characteristics	Symbol	Value	Unit
$\label{eq:maximum Instantaneous Forward Voltage (Note 1)} \begin{subarray}{l} (i_F = 3.0 \text{ Amps, } T_J = 150^{\circ}\text{C}) \\ (i_F = 3.0 \text{ Amps, } T_J = 25^{\circ}\text{C}) \\ (i_F = 4.0 \text{ Amps, } T_J = 25^{\circ}\text{C}) \end{subarray}$	VF	1.53 1.75 1.85	V
Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, T _J = 100°C) (Rated dc Voltage, T _J = 25°C)	i _R	900 25	μΑ
Maximum Reverse Recovery Time $ \begin{aligned} (I_F = 1.0 \text{ Amp, di/dt} = 50 \text{ Amp/}\mu\text{s}) \\ (I_F = 0.5 \text{ Amp, i}_R = 1.0 \text{ Amp, I}_{REC} = 0.25 \text{ Amp}) \end{aligned} $	t _{rr}	100 75	ns
Maximum Forward Recovery Time (I _F = 1.0 Amp, di/dt = 100 Amp/μs, Recovery to 1.0 V)	t _{fr}	75	ns
Controlled Avalanche Energy (See Test Circuit in Figure 6)	W _{AVAL}	20	mJ

^{1.} Pulse Test: Pulse Width = 300 $\mu s,$ Duty Cycle \leq 2.0%.

1000 400 200 100 $T_J = 175^{\circ}C$ REVERSE CURRENT (µ A) 40 20 10 100°C 4.0 2.0 1.0 25°C 0.4 0.2 0.1 0.04 0.02 0.01 <u>å</u> *The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if V_R is sufficiently below rated V_R . 100 200 400 500 600 700 800 900 1000 V_R, REVERSE VOLTAGE (VOLTS)

Figure 2. Typical Reverse Current*

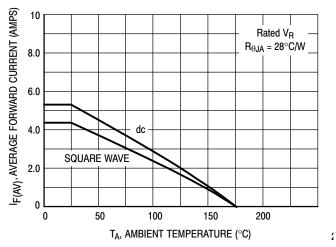
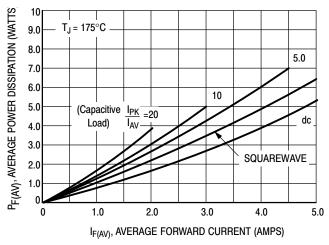



Figure 3. Current Derating (Mounting Method #3 Per Note 1)

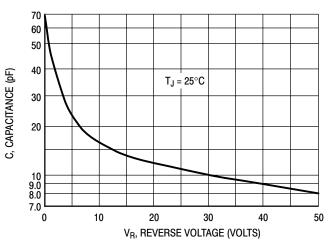


Figure 5. Typical Capacitance

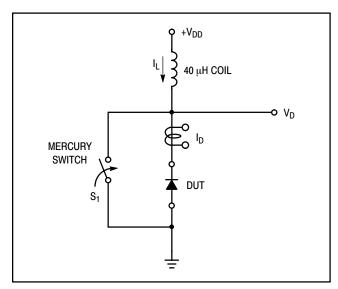


Figure 6. Test Circuit

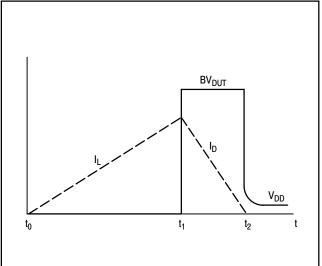


Figure 7. Current-Voltage Waveforms

The unclamped inductive switching circuit shown in Figure 6 was used to demonstrate the controlled avalanche capability of the new "E" series Ultrafast rectifiers. A mercury switch was used instead of an electronic switch to simulate a noisy environment when the switch was being opened.

When S_1 is closed at t_0 the current in the inductor I_L ramps up linearly; and energy is stored in the coil. At t_1 the switch is opened and the voltage across the diode under test begins to rise rapidly, due to di/dt effects, when this induced voltage reaches the breakdown voltage of the diode, it is clamped at BV_{DUT} and the diode begins to conduct the full load current which now starts to decay linearly through the diode, and goes to zero at t_2 .

By solving the loop equation at the point in time when S_1 is opened; and calculating the energy that is transferred to the diode it can be shown that the total energy transferred is equal to the energy stored in the inductor plus a finite amount of energy from the V_{DD} power supply while the diode is in breakdown (from t_1 to t_2) minus any losses due to finite

component resistances. Assuming the component resistive elements are small Equation (1) approximates the total energy transferred to the diode. It can be seen from this equation that if the V_{DD} voltage is low compared to the breakdown voltage of the device, the amount of energy contributed by the supply during breakdown is small and the total energy can be assumed to be nearly equal to the energy stored in the coil during the time when S_1 was closed, Equation (2).

The oscilloscope picture in Figure 8, shows the information obtained for the MUR8100E (similar die construction as the MUR4100E Series) in this test circuit conducting a peak current of one ampere at a breakdown voltage of 1300 V, and using Equation (2) the energy absorbed by the MUR8100E is approximately 20 mjoules.

Although it is not recommended to design for this condition, the new "E" series provides added protection against those unforeseen transient viruses that can produce unexplained random failures in unfriendly environments.

EQUATION (1):

$$W_{AVAL} \approx \frac{1}{2}LI_{LPK}^{2} \left(\frac{BV_{DUT}}{BV_{DUT} - V_{DD}} \right)$$

EQUATION (2):

$$W_{AVAL} \approx \frac{1}{2}LI_{LPK}^2$$

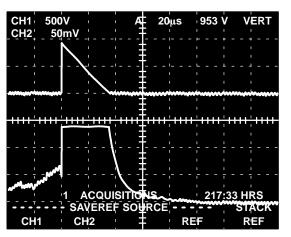


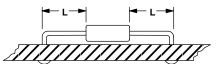
Figure 8. Current-Voltage Waveforms

CHANNEL 2: I_L 0.5 AMPS/DIV.

CHANNEL 1: V_{DUT} 500 VOLTS/DIV.

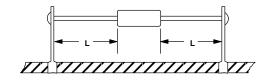
TIME BASE: 20 μs/DIV.

NOTE 1 — AMBIENT MOUNTING DATA


Data shown for thermal resistance junction–to–ambient ($R_{\theta JA}$) for the mountings shown is to be used as typical guideline values for preliminary engineering or in case the tie point temperature cannot be measured.

TYPICAL VALUES FOR $R_{\theta \text{JA}}$ IN STILL AIR

Mounti	ng	Lead Length, L (IN)				
Method		1/8	1/4	1/2	3/4	Units
1		50	51	53	55	°C/W
2	$R_{\theta JA}$	58	59	61	63	°C/W
3			28			°C/W

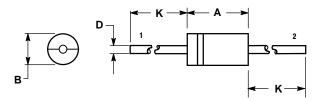

MOUNTING METHOD 1

P.C. Board Where Available Copper Surface area is small.

MOUNTING METHOD 2

Vector Push-In Terminals T-28

MOUNTING METHOD 3


P.C. Board with 1–1/2" x 1–1/2" Copper Surface

L = 1/2"

Board Ground Plane

PACKAGE DIMENSIONS

AXIAL LEAD CASE 267-05 **ISSUE G**

- 1. DIMENSIONS AND TOLERANCING PER ANSI
- 2. CONTROLLING DIMENSION: INCH.
 3. 267-04 OBSOLETE, NEW STANDARD 267-05.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.287	0.374	7.30	9.50
В	0.189	0.209	4.80	5.30
D	0.047	0.051	1.20	1.30
K	1.000		25.40	

STYLE 1:

PIN 1. CATHODE (POLARITY BAND)

2. ANODE

SWITCHMODE registered trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative