Semiconductor Group

Preliminary Data

Features

- 1-chip system for MPU control (I²C bus)
- 4 programmable chip addresses
- Short pull-in time for quick channel switch-over and optimized loop stability
- Charge pump output with switch off option
- Up to 3*) h outputs (20
- Up to 4*) or
- *) depending on version

SDA 3302-5X

SDA 3302-5X6

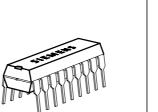
SDA 3302-5X

SDA 3302-5X6

	P-0	DSO-16-1	
Туре	Ordering Code	Package	
SDA 3302-5	Q67000-H5112	P-DIP-18-5	

Q67000-H5111

Q67000-H5110


Q67006-H5111

Q67006-H5110

igh current band switch	
) mA)	
utput ports (5 mA)	

GHz PLL with I²C Bus and Four Chip Addresses


```
P-DIP-18-5
```


P-DSO-20-1 (SMD)

P-DSO-16-1 (SMD)

P-DSO-20-1 Tape & Reel (SMD)

P-DSO-16-1 Tape & Reel (SMD)

Bipolar IC

SDA 3302 Family

Functional Description

Combined with a VCO (tuner) the SDA 3302 device, with four hardware-switched chip addresses, forms a digitally programmable phase-locked loop for use in television sets with PLL frequency-synthesis tuning.

The PLL permits precise crystal-controlled setting of the frequency of the tuner oscillators between 16 and 1300 MHz in increments of 62.5 kHz. The tuning process is controlled by a microprocessor via an I²C bus. The crystal oscillator generates a sinusoidal signal suppressing the higher-order harmonics, which reduces the moiré noise considerably.

Circuit Description

Tuning Section (refer to block diagram)

UHF/VHF The tuner signal is capacitively coupled at the UHF/VHF input and subsequently amplified. The reference input REF should be decoupled to ground using a capacitor of low series inductance. The signal passes through an asynchronous divider with a fixed ratio of P = 8, an adjustable divider with ratio N = 256 through 32767 and is then compared in a digital phase/frequency detector to a reference frequency f_{REF} of 7.8125 kHz. The latter is derived from a balanced, low-impedance 4 MHz crystal oscillator (pin Q1, Q2), whose output signal is divided by Q = 512.

The phase detector has two outputs UP and DOWN that drive the two current sources I+ and I- of a charge pump. If the negative edge of the divided VCO signal appears prior to the negative edge of the reference signal, the I+ current source pulses for the duration of the phase difference. In the reverse case the I- current source pulses.

PD, UD When the two signals are in phase, the charge-pump output (PD) goes highimpedance (PLL is locked). An active low-pass filter integrates the current pulses to generate the tuning voltage for the VCO (internal amplifier an external transistor at the UD output and an external RC circuitry). The charge-pump output can also be set to high-impedance state when control bit T0 = 1. Here it should be noted, however, that the tuning voltage can alter over a long period in the high-impedance state as a result of self-discharge in the peripheral circuitry. UD can be disconnected internally by the control bit OS to enable external adjustments.

By means of a control bit 5I the pump current can be switched between two values by software. This switchover permits alteration of the control response of the PLL in the locked-in state. In this way different VCO gains in the different TV bands can be compensated for example.

Circuit Description (cont'd)

- P0-P2 The software-switched outputs (P0, P1, P2) can be used for direct band selection (20-mA current output).
- P4-P7 P4, P5, P6 and P7 are open-collector outputs for a variety of different purposes. The test bit T1 = 1 switches the test signals f_{REF} (4 MHz/512) and Cy (divided input signal) to P6 and P7.
- CAS Four different chip addresses can be set by appropriate connection of pin CAS.

I²C-Bus Interface

SCL, SDA Data are exchanged between the processor and the PLL on the I²C bus. The clock is produced by the processor (input SCL), while pin SDA works as an input or output depending on the direction of the data (open collector; external pullup resistor). Both inputs have hysteresis and a lowpass characteristic, which enhances the noise immunity of the I²C bus.

The data from the processor are applied to an I²C bus controller and filed in registers according to their function. When the bus is free, both lines are in the marking state (SDA, SCL are high). Each telegram begins with a start condition and ends with the stop condition. Start condition: SDA goes low while SCL remains high; stop condition: SDA goes high while SCL remains high. All further data exchanges occur while SCL is low and are accepted by the controller with the positive clock edge.

For what follows, refer to the table of logic allocations.

All telegrams are transmitted byte by byte, followed by a ninth clock pulse, during which the controller puts the SDA line on low (acknowledge condition). The first byte consists of seven address bits, with which the processor selects the PLL from a number of peripheral devices (chip select). The eighth bit is always low. In the data portion of the telegram the first bit of the first or third data byte determines whether a divider ratio or control information follows. In each case the byte following the first byte must be of the same data type (or a stop condition).

 V_{s} , GND When the supply voltage is applied, a power-on reset circuit prevents the PLL from putting the SDA line on low, which would block the bus.

Circuit Description (cont'd)

Logic Allocations

	MSB						A =	Acknow	ledge
Address byte	1	1	0	0	0	MA1	MA0	0	А
Prog. divider byte 1	0	n14	n13	n12	n11	n10	n9	n8	А
Prog. divider byte 2	n7	n6	n5	n4	n3	n2	n1	n0	А
Control info. byte 1	1	51	T1	ТО	1	1	1	OS	А
Control info. byte 2	P7	P6	P5	P4	Х	P2	P1	P0	А

Divider Ratio

$$\begin{split} N = 16384 \times n14 + 8192 \times n13 + 4096 \times n12 + 2048 \times n11 + 1024 \times n10 + 512 \times n9 + 256 \times n8 + \\ + 128 \times n7 + 64 \times n6 + 32 \times n5 + 16 \times n4 + 8 \times n3 + 4 \times n2 + 2 \times n1 \\ + n0 \end{split}$$

Band Selection

P2-P0 = 1 Open-collector output is active.

Port Outputs

P7-P4 = 1

Open-collector output is active.

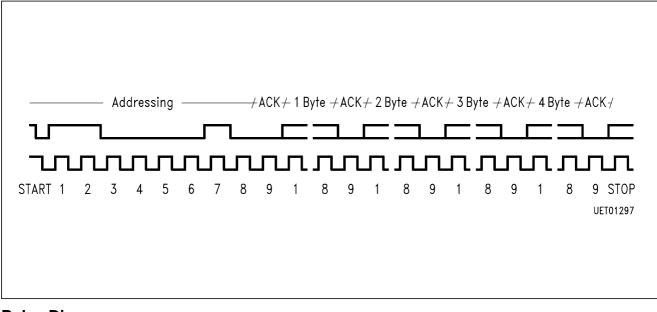
Pump Current Switchover

5l = 1

High current.

UD Disable

OS = 1 V_D is disabled.


Test Mode

T1, T0 = 0,0	Normal mode
T1 = 1	P6 = f_{REF} ; P7 = Cy
T0 = 1	Tristate charge pump PD is in high-impedance.

Circuit Description (cont'd)

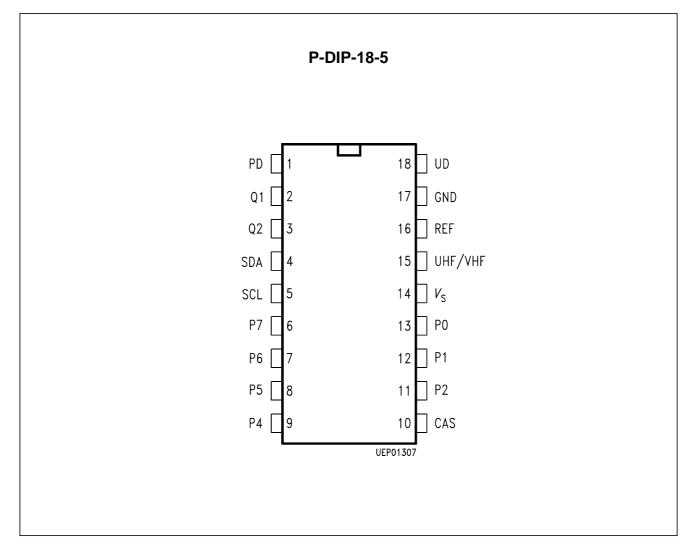
Chip-Address Switching

MA1	MA0	Voltage on CAS	
0	0	(0-0.1) V _s	
0	1	open	
1	0	(0.4-0.6) V _S	
1	1	(0.9-1) V _S	

Pulse Diagram

Telegram Examples

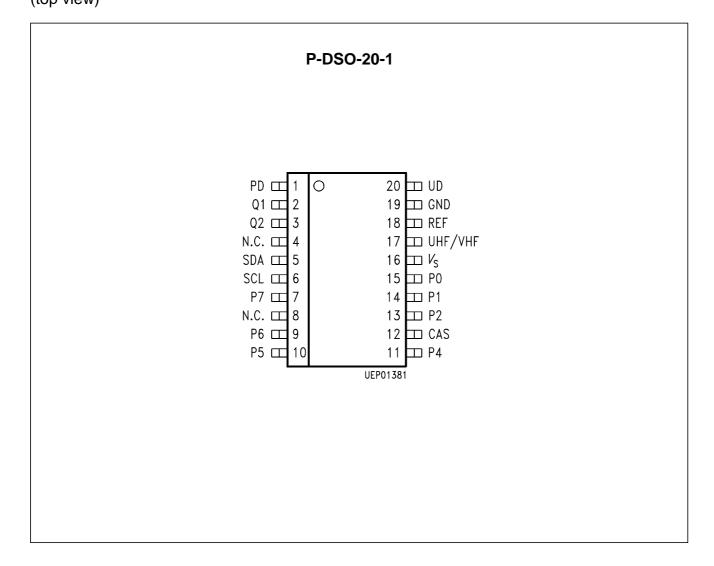
Start-Addr-DR1-DR2-CW1-CW2-Stop Start-Addr-CW1-CW2-DR1-DR2-Stop Start-Addr-DR1-DR2-CW1-Stop Start-Addr-CW1-CW2-DR1-Stop Start-Addr-DR1-DR2-Stop Start-Addr-CW1-CW2-Stop Start-Addr-DR1-Stop


Start	= start condition
Addr	= address
DR1	= divider ratio 1st byte
DR2	= divider ratio 2nd byte

- = divider ratio 2nd byte
- CW1 = control word 1st byte rd 2nd byte

= stop condition Stop

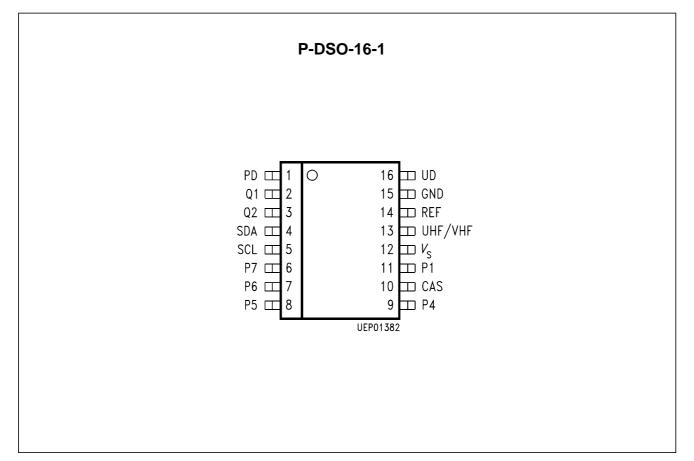
Pin Configuration (SDA 3302-5)


(top view)

Pin Definitions and Functions (SDA 3302-5)

Pin No.	Symbol	Function
1	PD	Active-filter input/charge-pump output
2	Q1	Crystal
3	Q2	Crystal
4	SDA	Data input/output for I ² C bus
5	SCL	Clock input for I ² C bus
6	P7	Port output (open collector)
7	P6	Port output (open collector)
8	P5	Port output (open collector)
9	P4	Port output (open collector)
10	CAS	Chip-address switchover
11	P2	Port output (open collector)
12	P1	Port output (open collector)
13	P0	Port output (open collector)
14	Vs	Supply voltage
15	UHF/VHF	Signal input
16	REF	Amplifier reference input
17	GND	Ground
18	UD	Output active filter

Pin Configuration (SDA 3302-5X) (top view)

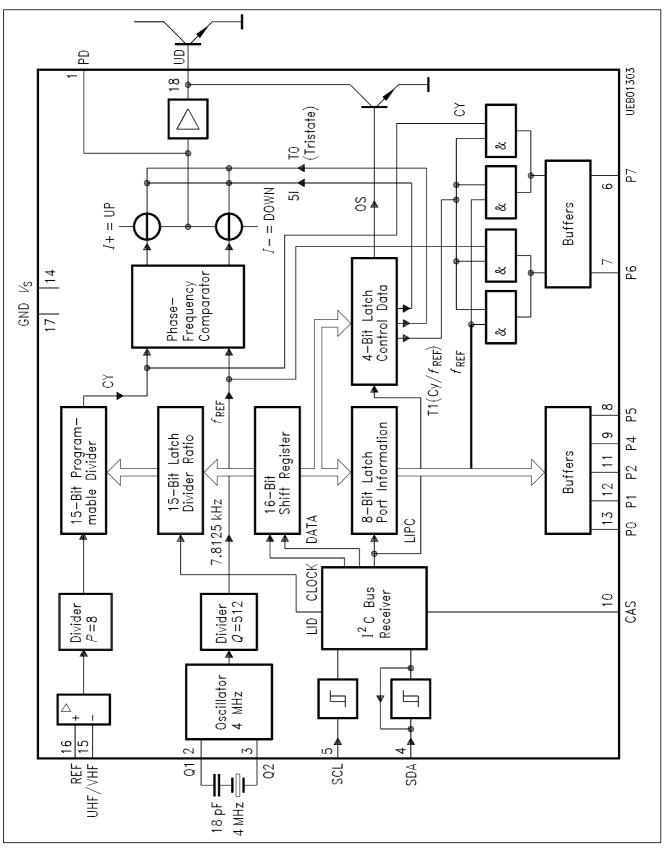


Pin Definitions and Functions (SDA 3302-5X)

Pin No.	Symbol	Function
1	PD	Active-filter input/charge-pump output
2	Q1	Crystal
3	Q2	Crystal
4	N.C.	Not connected
5	SDA	Data input/output for I ² C bus
6	SCL	Clock input for I ² C bus
7	P7	Port output (open collector)
8	N.C.	Not connected
9	P6	Port output (open collector)
10	P5	Port output (open collector)
11	P4	Port output (open collector)
12	CAS	Chip-address switchover
13	P2	Port output (open collector)
14	P1	Port output (open collector)
15	P0	Port output (open collector)
16	Vs	Supply voltage
17	UHF/VHF	Signal input
18	REF	Amplifier reference input
19	GND	Ground
20	UD	Active-filter output

Pin Configuration (SDA 3302-5X6)

(top view)



Pin Definitions and Functions (SDA 3302-5X6)

Pin No.	Symbol	Function	
1	PD	Active-filter input/output pump output	
2	Q1	Crystal	
3	Q2	Crystal	
4	SDA	Data input/output for I ² C bus	
5	SCL	Clock input for I ² C bus	
6	P7	Port output (open collector)	
7	P6	Port output (open collector)	
8	P5	Port output (open collector)	
9	P4	Port output (open collector)	
10	CAS	Chip-address switchover	
11	P1	Port output (open collector)	
12	Vs	Supply voltage	
13	UHF/VHF	Signal input	
14	REF	Amplifier reference input	
15	GND	Ground	
16	UD	Output active filter	

Pin Definitions and Functions, Reference List

SDA 3302 P-DIP-18-5 Pin No.	SDA 3302X P-DSO-20-1 Pin No.	SDA 3302X6 P-DSO-16-1 Pin No.	Symbol	Function
1	1	1	PD	Input active-filter input charge pump output
2	2	2	Q1	Crystal
3	3	3	Q2	Crystal
-	4	-	N.C.	Not connected
4	5	4	SDA	Data input/output for I ² C bus
5	6	5	SCL	Clock input for I ² C bus
6	7	6	P7	Port output (open collector)
-	8	-	N.C.	Not connected
7	9	7	P6	Port output (open collector)
8	10	8	P5	Port output (open collector)
9	11	9	P4	Port output (open collector)
10	12	10	CAS	Chip-address switchover
11	13	-	P2	Port output (open collector)
12	14	11	P1	Port output (open collector)
13	15	-	P0	Port output (open collector)
14	16	12	Vs	Supply voltage
15	17	13	UHF/VHF	Signal input
16	18	14	REF	Amplifier reference input
17	19	15	GND	Ground
18	20	16	UD	Output active filter

Block Diagram SDA 3302-5

Pin nos. refer to P-DIP-18 package only. For other packages, see reference list on page 16

Absolute Maximum Ratings

 $T_{\rm A} = 25 \ ^{\circ}{\rm C}$

Parameter	Symbol ²⁾	Limit Values		Unit	Remarks	
		min.	max.			
Supply voltage	Vs	- 0.3	6	V		
Output PD	<i>V</i> ₁	- 0.3	Vs	V		
Crystal Q1	V ₂	- 0.3	Vs	V		
Crystal Q2	<i>V</i> ₃	- 0.3	Vs	V		
Bus input/output SDA	V_4	- 0.3	6	V		
Bus input SCL	V_5	- 0.3	6	V		
Port output P7, P6, P5, P4	V _{6, 7, 8, 9}	- 0.3	16	V		
Chip-address switchover	V ₁₀	- 0.3	Vs	V		
Port output P2, P1, P0	V _{11, 12, 13}	- 0.3	16	V	open collector	
Signal input UHF/VHF	V ₁₅	- 0.3	0.3	V	for $V_{\rm S} = 0$ V	
Reference input REF	V ₁₆	- 0.3	0.3	V	for $V_{\rm S} = 0$ V	
Output active filter UD	V ₁₈	- 0.3	Vs	V		
Bus output SDA	I _{4L}	- 1	5	mA	open collector	
Port output P7, P6, P5, P4	I _{6L, 7L, 8L, 9L}	- 1	5	mA	open collector	
Port output P2, P1, P0	I _{11L, 12L, 13L}	- 1	20	mA	open collector	
Chip temperature	T _C		125	°C		
Total port output current	Z_{IL}		25	mA		
Storage temperature	T _{stg}	- 40	125	°C		
Thermal resistance (system-air)	R _{thSA}		80	K/W		

2) Pin nos. refer to P-DIP-18 package

Absolute Maximum Ratings

 $T_{\rm A}$ = 25 °C

Parameter	Symbol ²⁾	Limit Values		Unit	Remarks
		min.	max.		
Operating Range					
Supply voltage	Vs	4.5	5.5	V	
Ambient temperature	T _A	- 20	80	°C	
Input frequency	f_{15}	16	1300	MHz	
Crystal frequency	f _{2,3}		4	MHz	
Programmable divider factor	N	256	32767		

1) Design note: no 100 % final inspection.

2) Pin nos. refer to P-DIP-18 package

Characteristics

 $V_{\rm S}$ = 5 V; $T_{\rm A}$ = 25 °C

Parameter	Symbol ²⁾	Liı	nit Val	ues	Unit	Test Condition	Test Circuit
		min.	typ.	max.			
Current consumption	Is		35		mA	$V_{\rm S}$ = 5 V	1
Crystal-oscillator frequency	f _{2, 3}	3.99975	4.000	4.00025	MHz	series capaci- tance 18 pF; $f_{xtal} = 4 \text{ MHz}$	1
Oscillator level ¹⁾ (Voltage across crystal)	V _{2,3}		2.6		Vpp		
Margin from 1st ¹⁾ and 2nd harmonic			20		dB		
Input Sensitivity L	JHF/VHF						
	a ₁₅ a ₁₅ a ₁₅	- 27/10 - 27/10 - 27/10		3/315 3/315 3/315	3)		2 2 2

Band-Select Outputs P0-P2 (switch with open collector)

Reserve current	<i>I</i> _{13Н}		10	μA	V _{13H} = 13.5 V	3
Residual voltage	V_{13L}		0.5	V	I _{13H} = 20 mA	3

Port Outputs P4-P7 (switch with open collector)

Reserve current	I _{9H}		10	μA	V _{9Н} = 13.5 V	4
Residual voltage	$V_{ m 9L}$		0.5	V	I _{9L} = 1.7 mA	4

Note: The sum of the currents in ports P0-P7 must not exceed 25 mA

Phase-Detector Output PD

Pump current	I _{1H}	± 90	±230	± 300	μA	5I = HIGH; $V_1 = 2 V$	
Pump current	I _{1H}	± 22	± 50	±75	μA	5I = LOW; $V_1 = 2 V$	
Output voltage	V _{1L}	1.0		2.5	V	locked	

1) Design note: no 100 % final inspection.

2) Pin nos. refer to P-DIP-18 package

3) dBm/mV_{rms} into 50 Ω

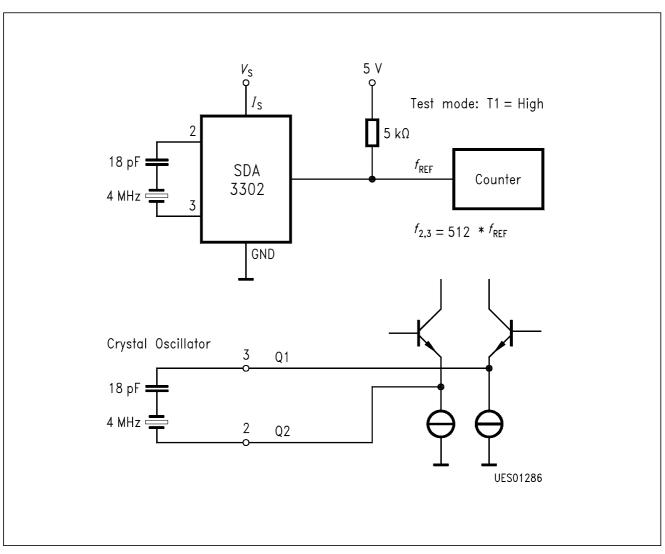
Characteristics (cont'd)

 $V_{\rm S} = 5 \text{ V}; T_{\rm A} = 25 \,^{\circ} \text{C}$

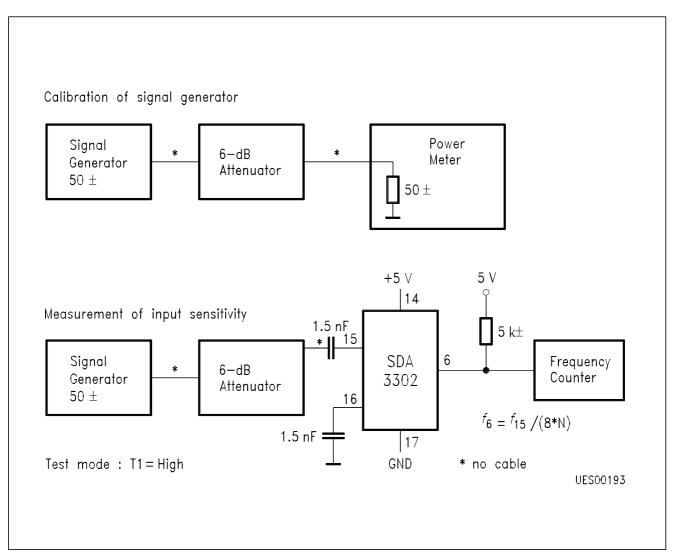
Symbol ²⁾	L	imit Va	lues	Unit	Test Condition	Test Circuit
	min.	typ.	max.			
ter UD (T0 =	1)					
- I ₁₈	500			μA	$V_{18} = 0.8 \text{ V};$ $I_{1H} = 90 \mu\text{A}$	5
V ₁₈			100	mV	$V_{1L} = 0 \text{ V}$	5
V ₁₈			500	mV	OS = 1	5
vitchover				I		
<i>I</i> _{10H}			50	μA	V _{10H} = 5 V	7
- I _{10H}			50	μA	V _{10H} = 0 V	7
SDA					-	
$V_{\rm 5H} \ V_{\rm 5L}$	3		5.5 5.5	V V		6 6
<i>I</i> _{5Н}			10	μA	$V_{\rm 5H} = V_{\rm S}$	6
- I _{5L}			20	μA	$V_{5L} = 0 V$	6
n collector)			·			
I _{4H}			10	μA	$V_{\rm 4H} = 5.5 \ { m V}$	6
V _{4L}			0.4	V	$I_{4L} = 3 \text{ mA}$	6
•						
t _R			1	μs		6
t _F			0.3	μs		6
	1					
	ter UD (T0 = $-I_{18}$ V_{18} V_{18} V_{18} I_{10H} $-I_{10H}$ SDA V_{5H} V_{5L} I_{5H} $-I_{5L}$ n collector) I_{4H} V_{4L}	organization min. ter UD (T0 = 1) $-I_{18}$ 500 V_{18} 500 V_{18} I_{10H} I_{10H} I_{10H} $-I_{10H}$ I_{10H} SDA V_{5H} 3 V_{5H} 3 V_{5H} 1_{5H} I_{5H} $-I_{5L}$ n collector) I_{4H} V_{4L} I_{4H}	by min. typ. min. typ. ter UD (T0 = 1) $-I_{18}$ 500 $-I_{18}$ 500 $-I_{18}$ V_{18} $-I_{18}$ $-I_{18}$ V18 $-I_{10H}$ $-I_{10H}$ I $-I_{10H}$ $-I_{10H}$ SDA V_{5H} 3 V_{5H} 3 $-I_{5L}$ I $-I_{5L}$ $-I_{5L}$ n collector) I_{4H} $-I_{5L}$ I_{R} $-I_{10H}$ $-I_{10H}$	min. typ. max. ter UD (T0 = 1) $-I_{18}$ 500 V_{18} 500 100 V_{18} 100 500 V_{18} 500 500 <i>V</i> ₁₈ 500 500 <i>V</i> ₁₈ 500 500 <i>V</i> ₁₈ 50 50 <i>I</i> _{10H} 50 50 <i>J</i> _{10H} 50 50 SDA 5.5 5.5 <i>I</i> _{5H} 3 5.5 5.5 <i>I</i> _{5H} 10 20 n collector) 10 <i>I</i> _{4H} 0.4 0.4	Oynnoon min. typ. max. ter UD (T0 = 1) $-I_{18}$ 500 μ A V_{18} 100 mV V_{18} 100 mV V_{18} 100 mV V_{18} 500 mV itchover 500 μ A I_{10H} 50 μ A $-I_{10H}$ 50 μ A SDA 50 μ A V_{5H} 3 5.5 V I_{5H} 10 μ A $-I_{5L}$ 10 μ A $r collector)$ 10 μ A I_{4H} 0.4 V I_{R} 1 μ S	The symbol min. typ. max. ter UD (T0 = 1) I_{18} 500 μA $V_{18} = 0.8 \ V;$ V_{18} 100 mV $V_{1L} = 0 \ V$ V_{18} 100 mV $V_{1L} = 0 \ V$ V_{18} 500 mV OS = 1 <i>itchover</i> 10H 50 μA $V_{10H} = 5 \ V$ I_{10H} 50 μA $V_{10H} = 0 \ V$ SDA 55 V $V_{10H} = 0 \ V$ state 10 μA $V_{5H} = 0 \ V$ V_{5L} 3 5.5 V $V_{5H} = V_S$ I_{5H} 3 5.5 V $V_{5H} = V_S$ I_{5H} 10 μA $V_{5H} = V_S$ $-I_{5L}$ 20 μA $V_{4H} = 5.5 \ V$ V_{4L} 0.4 V $I_{4L} = 3 \ mA$

Frequency	f_5	0	100	kHz	6
H-pulse width	t _{5H}	4		μs	6
L-pulse width	t _{5L}	4.7		μs	6

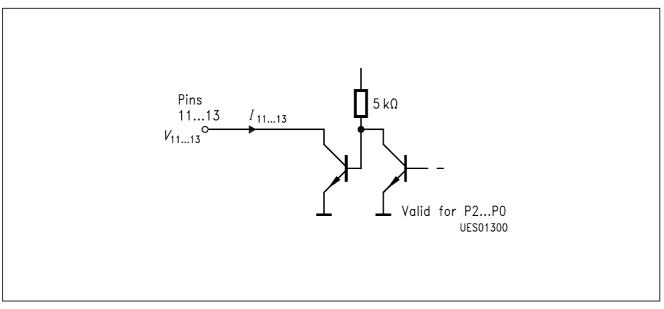
2) Pin nos. refer to P-DIP-18 package

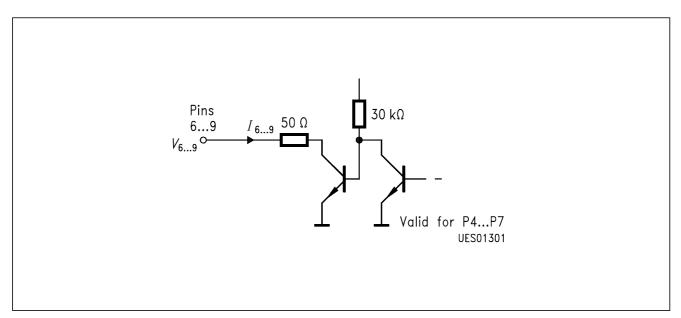

Characteristics (cont'd)

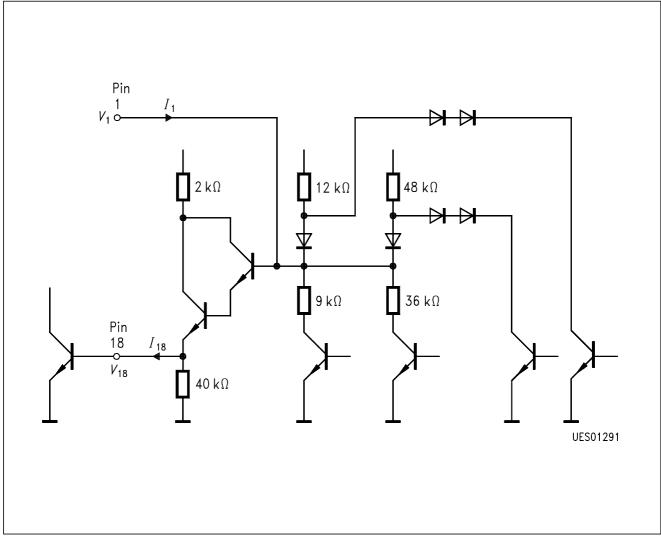
 $V_{\rm S} = 5 \text{ V}; T_{\rm A} = 25^{\circ} \text{C}$

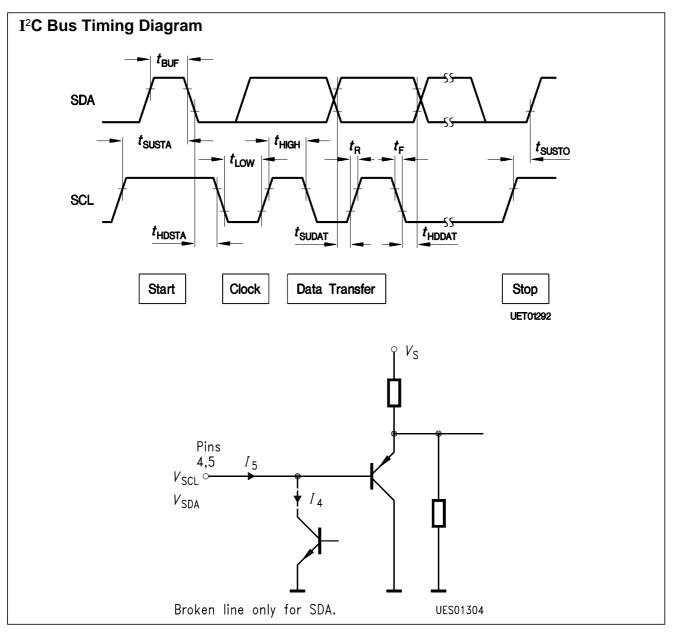

Parameter	Symbol ²⁾	L	imit Va	lues	Unit	Test Condition	Test Circuit
		min.	typ.	max.			
Start							
Setup time	t _{SUSta}	4.7			μs		6
Hold time	t _{HDSta}	4			μs		6
Stop					·		
Setup time	t _{SUsto}	4.7			μs		6
Bus free	t _{BUF}	4.7			μs		6
Data Exchange							•
Setup time	t _{SUDat}	0.25			μs		6
Hold time	t _{HDDat}	0			μs		6
Input hysteresis ¹⁾ SCL, SDA			300		mV		
Lowpass cutoff ¹⁾ frequency SCL, SDA			500		kHz		

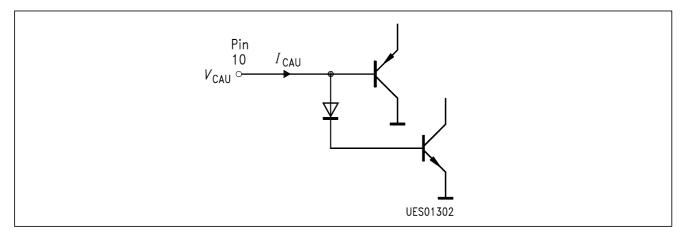
1) Design note: no 100 % final inspection.


2) Pin nos. refer to P-DIP-18 package

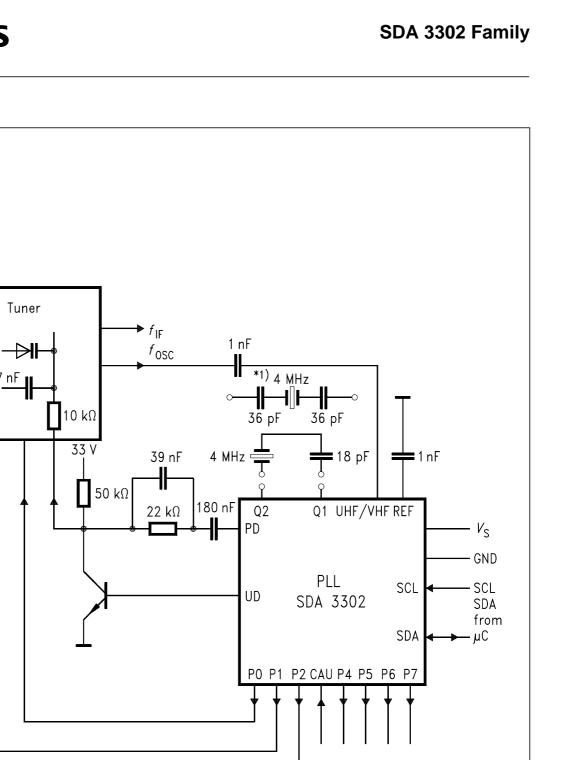

Test Circuit 1


Test Circuit 2


Test Circuit 3


Test Circuit 4

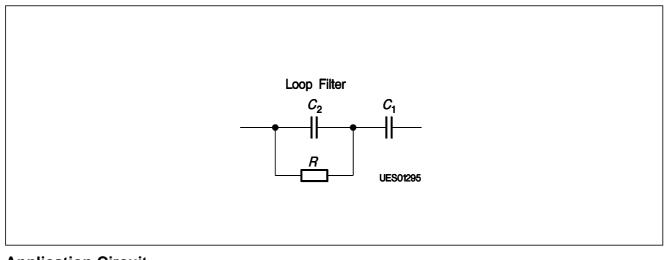
Test Circuit 5



Test Circuit 6

Test Circuit 7

47 nF



*1) This configuration of the load capacitances improves the balance of this crystal oscillator and thus reduces crosstalk.

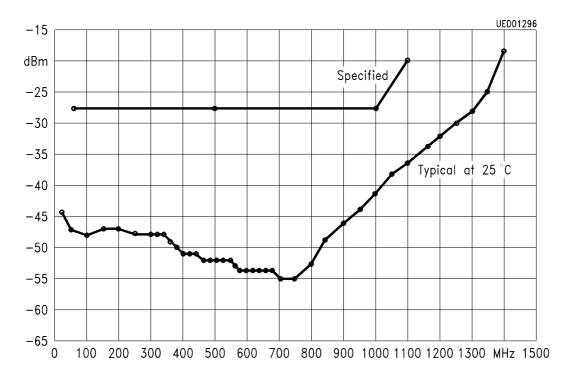
UES00191

Application Circuit

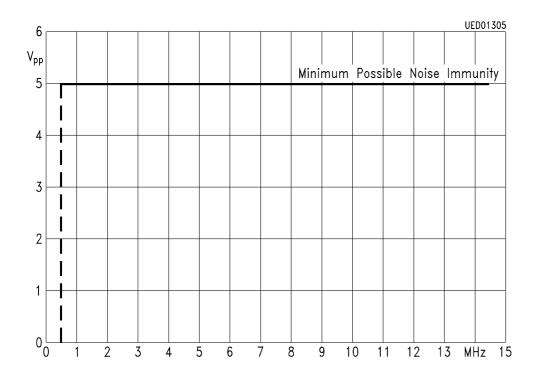
Application Circuit

Calculation of Loop Filter

Loop bandwidth $\omega_{R} = \sqrt{(I_{p} \times K_{VCO}) / (C_{1} \times P \times N)}$ Attenuation: $\xi = 0.5 \times \omega_{R} \times R \times C_{1}$ P = prescaler N = programmable divider $I_{p} = \text{pump current}$ $K_{VCO} = \text{tuner slope}$ $R, C_{1} = \text{loop filter}$

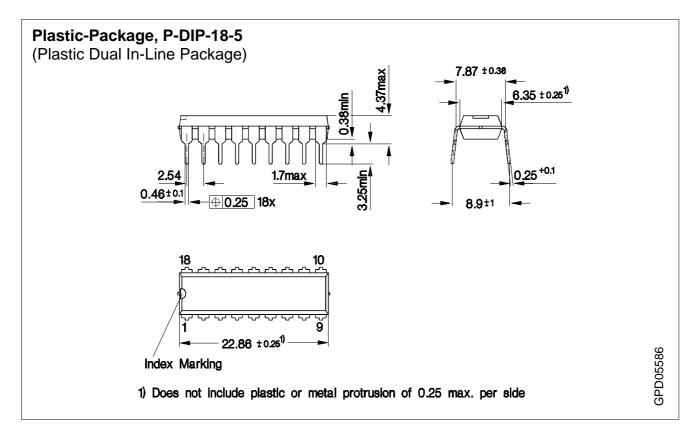

Example for channel 47:

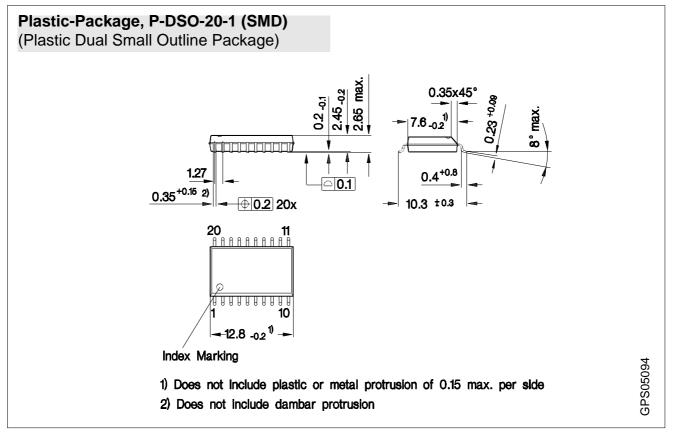
P = 8, N = 11520, I_p = 100 μA; K_{VCO} = 18.7 MHz/V, R = 22 kΩ, C_1 = 180 nF, ω_R = 336 Hz, f_r = 54 Hz, ξ = 0.67

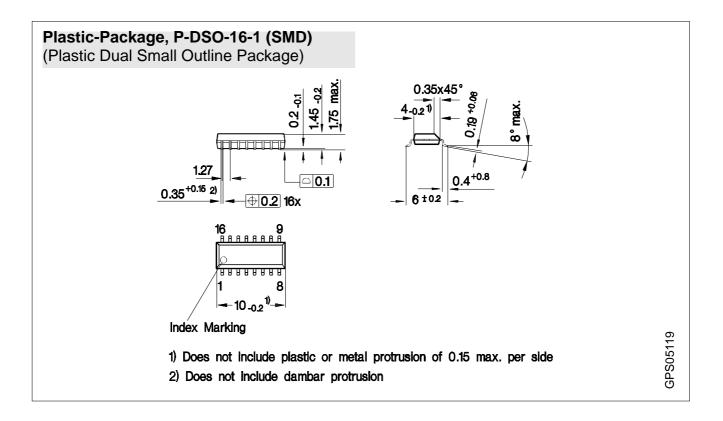

Standard dimensioning: $C_2 = C_{1/5}$

Note: The high-impedance port outputs and CAS can be blocked against external noise with a capacitor of 1 nF.

Input Sensitivity




I²C Bus Noise Immunity



The sinusoidal noise pulses are applied via a coupling capacitance of 33 pF to SCL and SDA inputs.

Package Outlines

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information"

SMD = Surface Mounted Device

Dimensions in mm