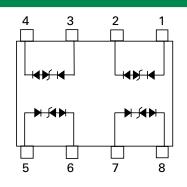
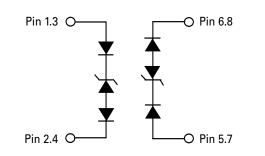


Po


GREEN

RoHS


SLVU2.8-4 Series 2.8V 40A TVS Array

Pinout

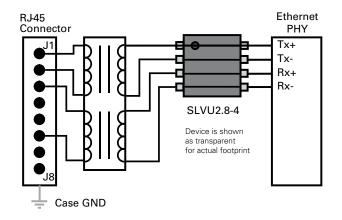
Functional Block Diagram

Additional Information

Description

The SLVU2.8-4 was designed to protect low voltage, CMOS devices from ESD and lightning induced transients. There is a compensating diode in series with each low voltage TVS to present a low loading capacitance to the line being protected. These robust structures can safely absorb repetitive ESD strikes at ± 30 kV (contact discharge) per IEC 61000-4-2 standard and each structure can safely dissipate up to 40A (IEC 61000-4-5 2nd edition, t_P=8/20µs) with very low clamping voltages.

Features

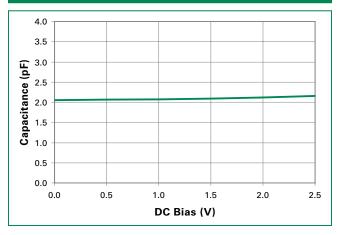

- ESD, IEC 61000-4-2, ±30kV contact, ±30kV air
- EFT, IEC 61000-4-4, 40A (5/50ns)
- Lightning, IEC 61000-4-5 2nd edition, 40A (8/20µs)
- Low capacitance of 2pF per line
- Low leakage current of 1µA (MAX) at 2.8V
- SOIC-8 (JEDEC MO-012) pin configuration allows for simple flow-through layout
- RoHS Compliant and Lead Free
- Moisture Sensitivity Level
 (MSL-1)

Applications

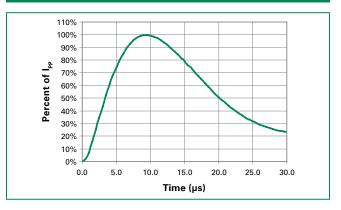
- 10/100/1000 Ethernet
- WAN/LAN Equipment
- Switching Systems
- Desktops, Servers, and Notebooks
- Base Stations

Analog Inputs

Application Example


Electrical Characteristics (T _{OP} = 25°C)						
Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Reverse Standoff Voltage	V _{RWM}	I _R ≤1μA			2.8	V
Reverse Breakdown Voltage	V _{BR}	I _τ =2μA	3.0			V
Snap Back Voltage	V _{SB}	I _T =50mA	2.8			V
Reverse Leakage Current	I _{LEAK}	V _R =2.8V (Each Line)			1	μA
Clamping Voltage ¹	V _c	I _{PP} =5A, t _P =8/20μs (Each Line)		7.0	8.5	V
Clamping Voltage ¹	V _c	I _{PP} =24A, t _P =8/20μs (Each Line)		13.9	15.0	V
ESD Withstand Voltage ¹		IEC61000-4-2 (Contact)	±30			kV
	V _{ESD}	IEC61000-4-2 (Air)	±30			kV
Dynamic Resistance	R _{DYN}	(V _{C2} - V _{C1}) / (I _{PP2} - I _{PP1}) (Each Line)		0.4		Ω
Diode Capacitance ¹	CD	V _R =0V, f=1MHz (Each Line)		2.0	2.5	pF

Note: 1Parameter is guaranteed by design and/or device characterization.


Absolute Maximum Ratings					
Parameter	Rating	Units			
Peak Pulse Power (t _P =8/20µs)	600	W			
Peak Pulse Current (t _P =8/20µs)	40	А			
Operating Temperature	–40 to 125	°C			
Storage Temperature	–55 to 150	°C			

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

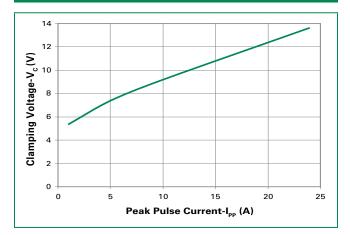
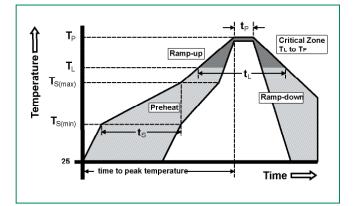

Figure 1: Capacitance vs. Reverse Voltage

Figure 3: 8/20 µs Pulse Waveform

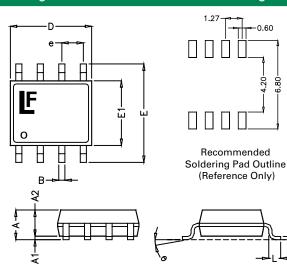
Figure 2: Clamping Voltage vs. I_{PP}

Product Characteristics			
Lead Plating	Matte Tin		
Lead Material	Copper Alloy		
Lead Coplanarity	0.0004 inches (0.102mm)		
Substitute Material	Silicon		
Body Material	V-0 per UL 94 Molded Epoxy		


Notes

- All dimensions are in millimeters
 Dimensions include solder plating.

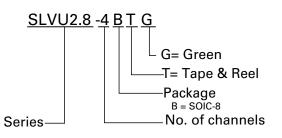
- Dimensions include solder plating.
 Dimensions are exclusive of mold flash & metal burr.
 All specifications comply to JEDEC SPEC MO-203 Issue A
 Blo is facing up for mold and facing down for trim/form, i.e. reverse trim/form.
 Package surface matte finish VDI 11-13.


Soldering Parameters

Reflow Condition		Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ramp up rate (Liquidus) Temp (T _L) to peak		5°C/second max	
T _{S(max)} to T	- Ramp-up Rate	5°C/second max	
Reflow	-Temperature (T_L) (Liquidus)	217°C	
nellow	-Temperature (t _L)	60 – 150 seconds	
PeakTemp	erature (T _P)	260 ^{+0/-5} °C	
Time within 5°C of actual peak Temperature (t _p)		20 – 40 seconds	
Ramp-down Rate		5°C/second max	
Time 25°C to peak Temperature (T _P)		8 minutes Max.	
Do not exceed		260°C	

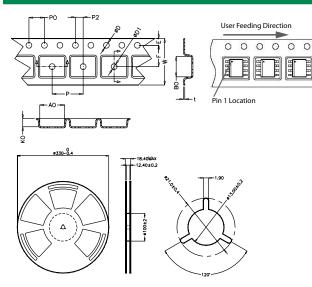
Package Dimensions – Mechanical Drawings and Recommended Solder Pad Outline

oluce PLANE



Package	SOIC-8			
Pins	8			
JEDEC	MS-012			
	Millin	netres	Inc	hes
	Min	Max	Min	Max
Α	1.35	1.75	0.053	0.069
A1	0.10	0.25	0.004	0.010
A2	1.25	1.65	0.050	0.065
В	0.31	0.51	0.012	0.020
C	0.17	0.25	0.007	0.010
D	4.80	5.00	0.189	0.197
Е	5.80	6.20	0.228	0.244
E1	3.80	4.00	0.150	0.157
е	1.27	BSC	0.050	BSC
L	0.40	1.27	0.016	0.050

© 2017 Littelfuse, Inc. Specifications are subject to change without notice. Revised: 05/12/17



Part Numbering System

Ordering Information					
Part Number	Package	Marking	Min. Order Qty.		
SLVU2.8-4BTG	SOIC-8	U2.8-4	2500		

Embossed Carrier Tape & Reel Specification - SOIC Package

Symbol	Millimetres		Inches		
	Min	Max	Min	Max	
E	1.65	1.85	0.065	0.073	
F	5.4	5.6	0.213	0.22	
P2	1.9	2.1	0.075	0.083	
D	1.5	1.6	0.059	0.063	
D1	1.50 Min		0.059 Min		
P0	3.9	4.1	0.154	0.161	
10P0	40.0 ± 0.20		1.574 ± 0.008		
W	11.9	12.1	0.468	0.476	
Р	7.9	8.1	0.311	0.319	
A0	6.3	6.5	0.248	0.256	
B0	5.1	5.3	0.2	0.209	
К0	2	2.2	0.079	0.087	
t	0.30 ± 0.05		0.012 ±	± 0.002	

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at <u>www.littelfuse.com/disclaimer-electronics</u>.

Part Marking System

