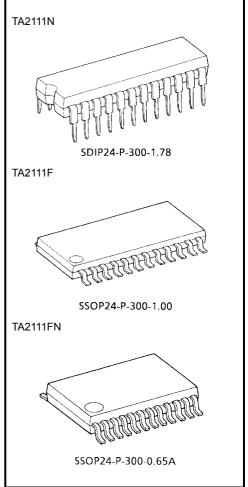
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

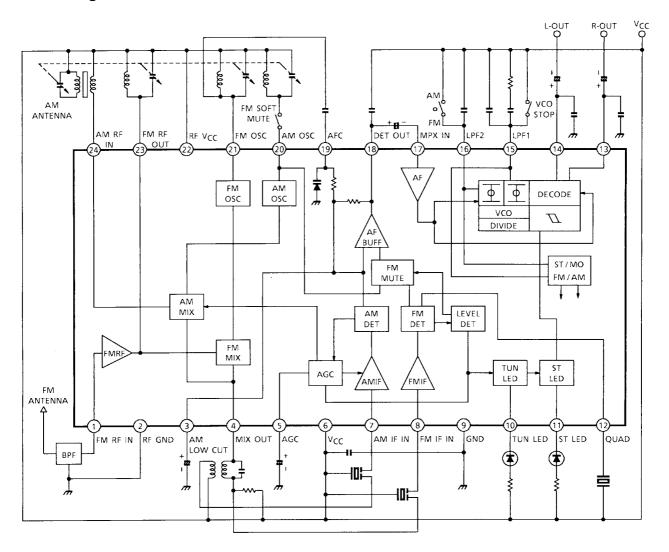
TA2111N,TA2111F,TA2111FN


3 V AM/FM 1 Chip Tuner IC

TA2111N/F/FN are AM/FM 1 chip tuner ICs, which are designed for portable radios and 3 V Head phone radios.

FM local oscillation voltage is set up low relativity, for NEW FCC.

Features


- For NEW FCC.
- AM Detector coil, FM IFT, IF coupling condenser are not needed
- For adopting ceramic discriminator, it is not necessary to adjust the FM quad detector circuit.
- Built-in FM MPX VCO circuit.
- Built-in varactor diode for AFC.
- Built-in AM low cut circuit.
- Low supply current. (V_{CC} = 3 V, Ta = 25°C)
 I_{CCq} (FM) = 9.0 mA (typ.)
 I_{CCq} (AM) = 5.0 mA (typ.)
- Operating supply voltage range: VCC = 1.8~7 V (Ta = 25°C)

Weight SDIP24-P-300-1.78: 1.2 g (typ.) SSOP24-P-300-1.00: 0.31 g (typ.) SSOP24-P-300-0.65A: 0.14 g (typ.)

Note 1: Handle with care to prevent devices from deteriorations by static electricity.

Block Diagram

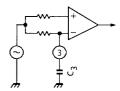
2 2002-03-05

Explanation of Terminals (Terminal voltage at no signal with test circuit, V_{CC} = 3 V, Ta = 25°C)

Pin	Characteristics	Internal Circuit	Termina (Typ	l Voltage .) (V)
No.	ondraotonous s	mema oneak	AM	FM
1	FM-RF IN	1	0	0.8
2	RF GND (GND for FM RF, FM OSC stage)	_	0	0
3	AM LOW CUT	$\begin{array}{c} \text{FM DET} \\ \text{AM} \\ \text{DET} \\ \text{10k}\Omega \\ \text{GND} \\ \text{9} \\ \end{array}$	1.0	0.8
4	MIX OUT	VCC 6 FM MIX AM MIX RF GND 2 9 GND	3.0	2.9
5	AGC (AM AGC)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0
6	V _{CC} (V _{CC} for AM, FM IF, FM MPX stage)	_	3.0	3.0
7	AM IF IN	CONTRACTOR OF THE CONTRACTOR O	2.3	2.6

Pin	Characteristics	Internal Circuit	Terminal Voltage (Typ.) (V)		
No.			AM	FM	
8	FM IF IN	VCC 6 GREEN GND 9	3.0	3.0	
9	GND (GND for AM, FM IF, FM MPX stage)	_	0	0	
10	TUN LED (Tuning LED)	GND (9)	_	_	
11	ST LED (Stereo LED)	19kHz ————————————————————————————————————	-	_	
12	QUAD (FM QUAD. Detector)	V _{CC} (6)	2.5	2.2	
13 14	R-OUT (R-ch Output) L-OUT (L-ch Output)	VCC 6 13/14 GND 9	1.2	1.2	

Pin No. Characteristics		Internal Circuit	Terminal Voltage (Typ.) (V)		
No.			AM	FM	
15	LPF1 • LPF terminal for synchronous Detector • VCO stop terminal V15 = V _{CC} → VCO STOP	15 DC AMP	2.3	2.3	
16	LPF2 • LPF terminal for phase Detector • Bias terminal for AM/FM SW circuit V16 = V _{CC} → AM V16 = OPEN → FM	16 AM/FM SW	3	2.2	
17	MPX IN	(17)————————————————————————————————————	0.7	0.7	
18	DET OUT	VCC 6 AM FM B T50Ω B COW-FM, HIGH-AM B LOW-AM, HIGH-FM	1.0	0.9	

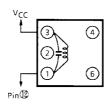

Pin No. Characteristics		Internal Circuit	Terminal Voltage (Typ.) (V)		
NO.			AM	FM	
19	AFC	cf. pin 3	1	_	
20	AM OSC	V _{CC} (6) (7) (8) (8) (8) (8) (8) (8) (8) (8) (8) (8	3.0	3.0	
21	FM OSC	RF VCC (2)	3.0	3.0	
22	RF V _{CC} (V _{CC} for FM OSC stage)	_	3.0	3.0	
23	FM RF OUT	cf. pin 1	3.0	3.0	
24	AM RF IN	VCC 6 AGC AGC GND 9	3.0	3.0	

Application Note

1. AM low-cut circuit

- The AM Low-Cut action is carried out by the bypass of the high frequency component of the positive-feedback signal at the AF AMP stage.

 The external capacitor: C₃ by-passes this component.
- The cut-off frequency fL is determined by the internal resistance 10 k Ω (typ.) and the external capacitor C3 as following;


$$f_L = \frac{1}{2 \times \pi \times 10 \times 10^3 \times C_3} \text{ (Hz)}$$

- In the case of the AM Low-Cut function is not needed, set up the value of C_3 over 1 μ F. In the condition of $C_3 \ge 1$ μ F, the frequency characteristic has flat response at the low frequency.
- In FM mode, C3 is a capacitor for AFC Low-Pass filter circuit.

2. FM detection circuit

For the FM detection circuit, detection coil is able to use instead of ceramic discriminator. Recommended circuit and recommended coil are as follows. In this case, please take care that V_{in} (lim.) falls a little.

Toot Fraguency	Co	0		Tu	rns		Wire	Reference
Test Frequency	(pF)	Qo	1-2	2-3	1-3	4-6	(mmφ)	Reference
10.7 MHz	51	45	_	_	30	_	0.08 UEW	TOKO Co., Ltd. 600BEAS-10018Z

Maximum Ratings (Ta = 25°C)

Characteristi	cs	Symbol	Rating	Unit	
Supply voltage	V _{CC}	8	V		
LED current		ILED	10	mA	
LED voltage		VLED	8	V	
	TA2111N		1200	1	
Power dissipation	TA2111F	P _D (Note 2)	400	mW	
	TA2111FN		500		
Operating temperature		T _{opr}	-25~75	°C	
Storage temperature	T _{stg}	-55~150	°C		

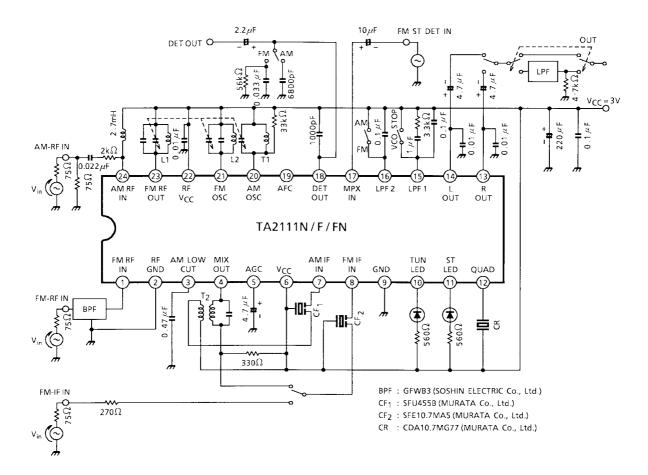
Note 2: Derated above Ta = 25°C in the proportion of 9.6 mW/°C for TA2111N, of 3.2 mW/°C for TA2111F and of 4 mW/°C for TA2111FN.

Electrical Characteristics

unless otherwise specified, Ta = 25°C, V_{CC} = 3 V,

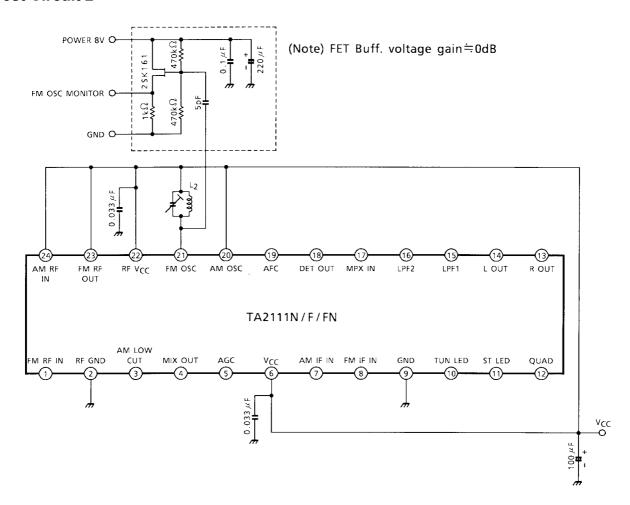
F/É : f = 98 MHz, $f_m = 1$ kHz FM IF : f = 10.7 MHz, $\Delta f = \pm 22.5$ kHz, $f_m = 1$ kHz

AM : f = 1 MHz, MOD = 30%, $f_m = 1$ kHz


MPX : $f_m = 1 \text{ kHz}$

	Characteristics		Symbol	Test Circuit	Test Condi	ition	Min	Тур.	Max	Unit		
Supply	Supply current		upply current		ICC (FM)	1	Vin = 0, FM mode		I	9	12.5	mA
Ouppiy	Carrent		I _{CC} (AM)	1	Vin = 0, AM mode		-	5	7.5			
F/E	Input limiting voltage	Vin (lim)	1	-3dB limiting	_	7	_	dBµV EMF				
	Local OSC voltage		Vosc	2	f _{OSC} = 108.7 MHz		_	105	_	mVrms		
	Input limiting voltage	je	Vin (lim) IF	1	-3dB limiting		35	40	45	dBµV EMF		
	Recovered output v	voltage	V _{OD}	1	Vin = 80dBµV EMF		60	75	90	mVrms		
	Signal to noise ration	0	S/N	1	Vin = 80dBµV EMF		-	65	_	dB		
FM IF	Total harmonic dist	ortion	THD	1	Vin = 80dBµV EMF	,	-	0.2	_	%		
	AM rejection ration		AMR	1	Vin = 80dBµV EMF		-	45	_	dB		
	LED on sensitivity		VL	1	I _L = 1 mA		40	45	50	dBµV EMF		
	Soft mute attenuati	on	MUTE	1	Vin = 0		_	20	_	dB		
	Gain		G _V	1	Vin = 25dBµV EMF		18	35	70	mVrms		
	Recovered output voltage		V _{OD}	1	Vin = 60dBµV EMF		50	70	90	mVrms		
AM	Signal to noise ratio		S/N	1	Vin = 60dBµV EMF		-	41	_	dB		
	Total harmonic distortion		THD	1	Vin = 60dBµV EMF		_	0.7	_	%		
	LED on sensitivity		VL	1	I _L = 1 mA	23	28	33	dBµV EMF			
Din 40	Pin 18 output resistance		Б		FM mode		_	0.75	_			
PIII 10			R ₁₈	_	AM mode		-	15.5		kΩ		
	Input resistance		R _{IN}	_	_		_	55	_	kΩ		
	Output resistance		R _{OUT}	_	_		-	5	_	kΩ		
	Max composite signorula voltage	Max composite signal input voltage		1	L + R = 90%, P = 10%, f _m = 1 kHz, THD = 3%		_	700	_	mVrms		
			Sep		L+R=	f _m = 100 Hz	_	45	_			
	Separation			1	180 mVrms,	f _m = 1 kHz		45 —		dB		
					P = 20 mVrms	f _m = 10 kHz	_	45	_			
	Total harmonic	Monaural	THD (MONAURAL)	1	Vin = 200 mVrms		ı	0.3	_	%		
MPX	distortion	Stereo	THD (STEREO)	1	L + R = 180 mVrms P = 20 mVrms	5,	ı	0.3	_	70		
	Voltage gain		G _V	1	Vin = 200 mVrms		-2.5	-1	0.5	dB		
	Channel balance		C.B.	1	Vin = 200 mVrms		-1.5	0	1.5	dB		
	Stereo LED ON		V _{L (ON)}	1	Pilot input		_	8	12	m\/r===		
	sensitivity OFF		V _{L (OFF)}	1			3	6	_	mVrms		
	Stereo LED hysteresis		V _H	1	To LED turn off from LED turn on				_	2	_	mVrms
	Capture range		C.R.	1	P = 20 mVrms		_	±8	_	%		
	Signal to noise ration	0	S/N	1	_	_	80	_	dB			

8


2002-03-05

Test Circuit 1

9 2002-03-05

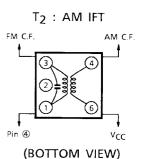
Test Circuit 2

Coil Data

Coil No.	Test Freq.	Toot From L	Со	0			Turns		Wire	Reference	
COII NO.	rest Fleq.	(µH)	(pF)	Qo	1-2	2-3	1-3	1-4	4-6	(mmφ)	Reference
L ₁ FM RF	100 MHz	_	_	79	_	_	_	$2\frac{1}{2}$	_	0.16UEW	TOKO Co., Ltd. 666SNF-305NK
L ₂ FM OSC	100 MHz	_	-	76	_	_	_	2		0.16UEW	TOKO Co., Ltd. 666SNF-306NK
T ₁ AM OSC	796 kHz	268	-	65	19	95	_	_		0.05UEW	TOKO Co., Ltd. 5PNR-5146Y
T ₂ AM IFT	455 kHz	_	470	60	_	_	109	_	7	0.05UEW	TOKO Co., Ltd. 5PLG-5147X

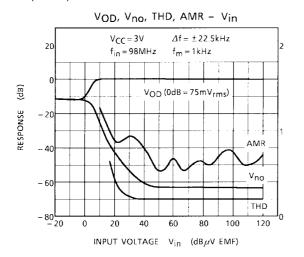
L₁: FM RF

 L_2 : FM OSC



T1: AM OSC
Pin ®

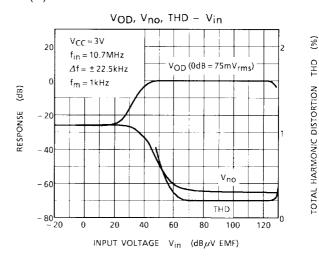
3 4

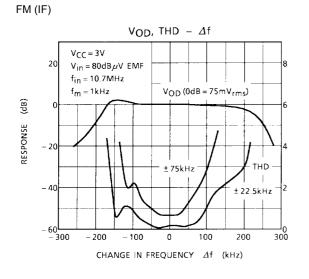

2 3

Vcc

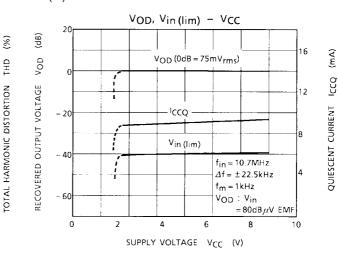
10

FM (F/E+IF)

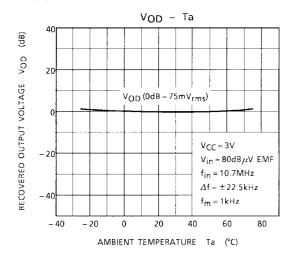


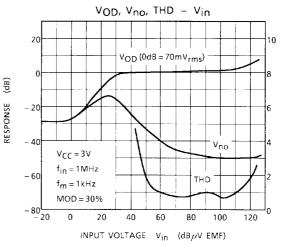

FM (IF)

8


THD

TOTAL HARMONIC DISTORTION




FM (IF)

FM (IF)

AM

TOTAL HARMONIC DISTORTION THD (%)

AM

MPX

(mA)

QUIESCENT CURRENT ICCO

(%

TOTAL HARMONIC DISTORTION THD

AM VOD, THD - MOD 300 V_{CC} = 3V $100 \mathrm{dB} \mu \mathrm{V}$ EMF VoD f_{in} = 1MHz $f_{\mathbf{m}} = 1kHz$ RECOVERED OUTPUT VOLTAGE (mV_{rms}) 200 60 V_{OD} 100 100 THD 60 20 40 80 100 MODULATION MOD (%)

VOD, ICC - VCC (dB) (%) VoD V_{OD} (0dB = 70m V_{rms}) THD TOTAL HARMONIC DISTORTION RECOVERED OUTPUT VOLTAGE $V_{in} = 60 dB \mu V$ - 20 EMF $f_{\hat{1}\hat{n}}=1MHz$ 10 f_m = 1kHz - 40 ICC - 60 0 2 SUPPLY VOLTAGE VCC (V)

AM

MPX

V_{OD} - Ta

V_{OD} - Ta

V_{OD} (0dB = 70mV_{rms})

V_{CC} = 3V

V_{in} = 60dB_μV EMF

f_{in} = 1kHz

MOD = 30%

- 40

- 20

0

20

AMBIENT TEMPERATURE Ta (°C)

40

60

80

8)

TOTAL HARMONIC DISTORTION THD

12

Sep, THD - Vin 100 $V_{CC} = 3V$ L + R = 90%(dB) P = 10% $f_{\boldsymbol{m}}=1kH\boldsymbol{z}$ SEPARATION Sep. Sep. R→L 20 THD 0 100 600 800 200 300 400 500 700 MAIN (L+R) SIGNAL INPUT VOLTAGE Vin (mVrms)

Sep, THD - fm

VCC = 3V
L+R = 135mVrms
P = 15mVrms

2

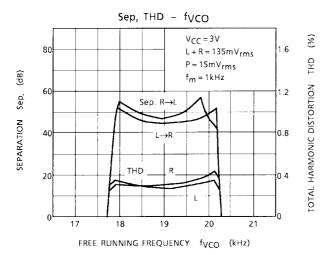
40
R → L

THD R

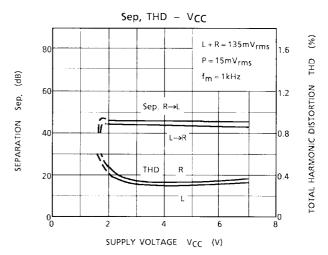
10
0.1 0.3 1 3 10 30

MODULATION FREQUENCY fm (kHz)

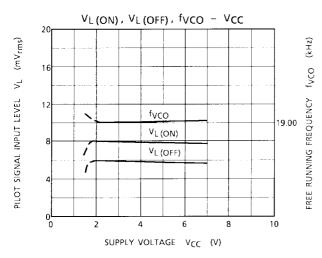
CAPTURE RANGE & LOCK RANGE


VCC = 3V

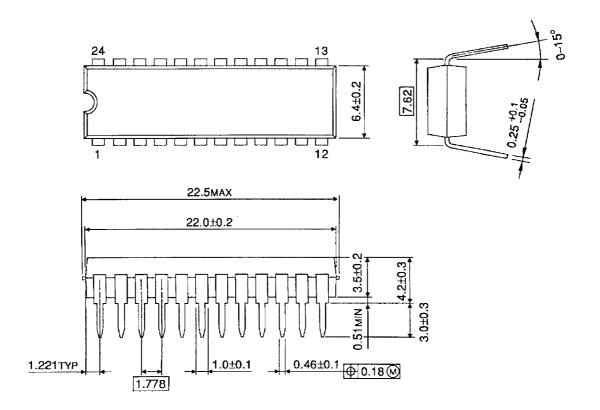
VCC = 3V


L.R.

FREE RUNNING FREQUENCY fVCO (kHz)


MPX

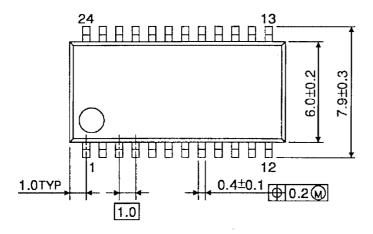
MPX

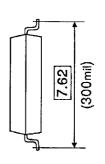

MPX

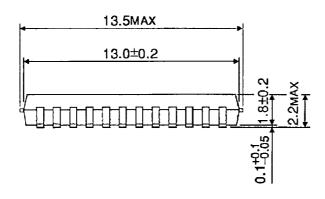
13 2002-03-05

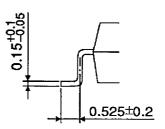
Package Dimensions

SDIP24-P-300-1.78 Unit: mm

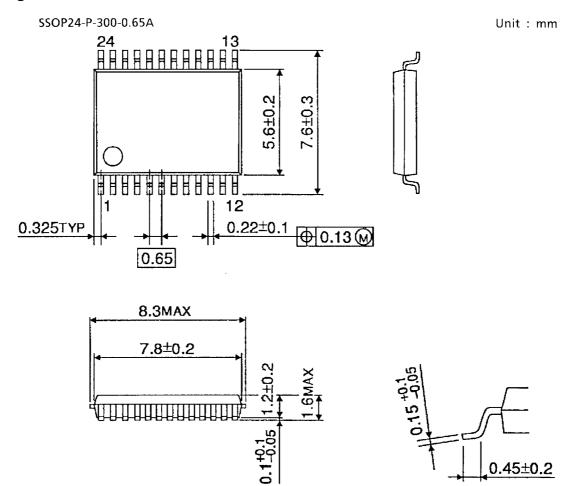



Weight: 1.2 g (typ.)


Unit: mm


Package Dimensions

SSOP24-P-300-1.00



Weight: 0.31 g (typ.)

Package Dimensions

16

Weight: 0.14 g (typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.