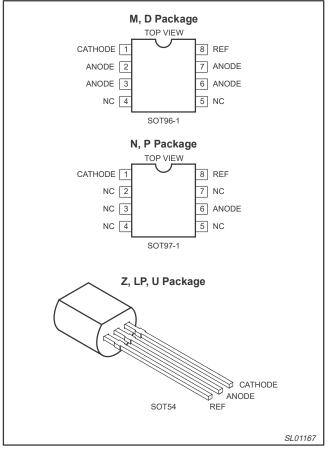

INTEGRATED CIRCUITS

Product specification

1997 Feb 25

TL431C, TL431AC, TL431I, TL431AI, LM431AC

DESCRIPTION


The TL431 and TL431A are 3-terminal adjustable shunt regulators with specified thermal stability over applicable automotive and commercial temperature ranges. The output voltage may be set to any value between V_{REF} (approximately 2.5V) and 36V with two external resistors (see Figure 4). These devices have a typical output impedance of 0.2Ω . Active output circuitry provides a very sharp turn-on characteristic, making these devices excellent replacements for zener diodes in many applications like on-board regulation, adjustable power supplies and switching power supplies.

The TL431C and TL431AC are characterized for operation from 0°C to +70°C; the TL431I and TL431AI are characterized for operation from -40°C to +85°C.

FEATURES

- Equivalent full-range temperature coefficient: 30ppm/°C
- 0.2Ω typical output impedance
- Sink current capability: 1mA to 100mA
- Low output noise
- Adjustable output voltage: V_{REF} to 36V

PIN CONFIGURATIONS

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	INDUSTRY STANDARD PART NUMBER	ORDER CODE	DWG #
3-Pin Plastic TO92 ²	0°C to +70°C	TL431CLP	TL431CLPU	SOT54
3-Pin Plastic TO92 ²	0°C to +70°C	TL431ACLP	TL431ACLPU	SOT54
3-Pin Plastic TO92 ²	–40°C to +85°C	TL431ILP	TL431ILPU	SOT54
3-Pin Plastic TO92 ²	–40°C to +85°C	TL431AILP	TL431AILPU	SOT54
3-Pin Plastic TO92 ²	0°C to +70°C	LM431ACZ	LM431ACZU	SOT54
8-Pin Plastic Small Outline (SO) package	0°C to +70°C	TL431CD	TL431CD	SOT96-1
8-Pin Plastic Small Outline (SO) package	-40°C to +85°C	TL431ID	TL431ID	SOT96-1
8-Pin Plastic Small Outline (SO) package	0°C to +70°C	TL431ACD	TL431ACD	SOT96-1
8-Pin Plastic Small Outline (SO) package	–40°C to +85°C	TL431AID	TL431AID	SOT96-1
8-Pin Plastic Small Outline (SO) package	0°C to +70°C	LM431ACM	LM431ACMD	SOT96-1
8-Pin Plastic Dual In-Line package (DIP)	0°C to +70°C	TL431CP	TL431CPN	SOT97-1
8-Pin Plastic Dual In-Line package (DIP)	–40°C to +85°C	TL431IP	TL431IPN	SOT97-1
8-Pin Plastic Dual In-Line package (DIP)	0°C to +70°C	TL431ACP	TL431ACPN	SOT97-1
8-Pin Plastic Dual In-Line package (DIP)	–40°C to +85°C	TL431AIP	TL431AIPN	SOT97-1

NOTE:

1. SYMBOL INFORMATION: Parts will be marked with product name including temperature and electrical grade desginators, but not the package identifier.

2. TO92 is normally shipped in bulk, i.e., in plastic bags (containing 1,000 parts), 5 bags per box. Tape and reel (or ammo box) is an option. See page 15 for information.

TL431C, TL431AC, TL431I, TL431AI, LM431AC

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V _{KA}	Cathode voltage (see Note 1)	37	V
	Continuous cathode current range	-100 to +150	mA
	Reference input current range	0.05 to 10	mA
T _{amb}	Operating free-air temperature range C suffix I suffix	0 to +70 –40 to +85	°C ℃
T _{STG}	Temperature storage range	–65 to 150	°C
	Lead temperature 1.6mm (1/16 in.) from case for 10 sec: D or P pkgs	260	°C
	Lead temperature 1.6mm (1/16 in.) from case for 60 sec: LP pkg	300	°C

NOTE:

1. Voltage values are with respect to the anode terminal unless otherwise noted.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN	MAX	UNITS
V _{KA}	Cathode voltage	V _{REF}	36	V
۱ _K	Cathode current	1	100	mA

Table 1. Dissipation Rating Table – Free-Air Temperature

Package	Derating Factor Above T _{amb} = 25°C	T _{amb} = 25°C Power Rating	T _{amb} = 70°C Power Rating	T _{amb} = 85°C Power Rating
D	5.8mW/°C	725mW	464mW	429mW
LP	6.2mW/°C	775mW	496mW	403mW
Р	8.0mW/°C	1000mW	640mW	520mW

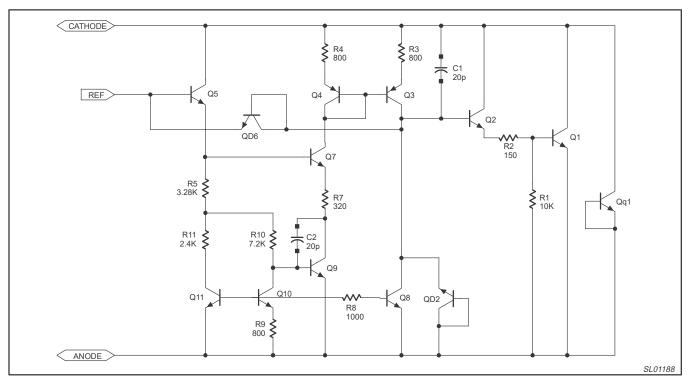


Figure 2. Equivalent Schematic

TL431C, TL431AC, TL431I, TL431AI, LM431AC

DC ELECTRICAL CHARACTERISTICS

25°C free-air temperature, unless otherwise stated.

SYMBOL	PARAMETER	TEST CKT	TEST	CONDITIONS	1	rL431A0	_431AC		TL431C/LM431AC		
					MIN	TYP	MAX	MIN	TYP		
V _{REF}	Reference input voltage	Fig. 3	V _{KA} = V _{REF}	., I _K = 10mA	2470	2495	2520	2440	2495	2550	mV
V _{REF(dev)}	Deviation of reference input voltage over full temperature range ³	Fig. 3	$V_{KA} = V_{REF}$, $I_K = 10mA$, $T_{amb} = full range2$			4	15		4	17	mV
ΔV_{REE}	Ratio of change in reference		1. 10	ΔV_{KA} = 10V – V _{REF}		-1.4	-2.7		-1.4	-2.7	
$\frac{\Delta V_{REF}}{\Delta V_{KA}}$	input voltage to the change in cathode voltage	Fig. 4	I _K = 10mA	∆V _{KA} = 36V – 10V		-1	-2		-1	mV/V	mv/v
I _{REF}	Reference input current	Fig. 4	I _K = 10mA,	- R ₁ = 10kΩ, R ₂ = ∞		2	4		2	4	μA
I _{REF(dev)}	Deviation of reference input current over full temperature range ³	Fig. 4	I _K = 10mA, T _{amb} = full r	$R_1 = 10kΩ$, $R_2 = ∞$, range ²		0.8	1.2		0.4	1.2	μA
I _{MIN}	Minimum cathode current for regulation	Fig. 3	V _{KA} = V _{REF}			0.4	0.6		0.4	1	mA
I _{OFF}	Off-state cathode current	Fig. 5	V _{KA} = 36V, V _{REF} = 0			0.1	0.5		0.1	1	μA
Z _{KA}	Dynamic impedance ⁴	Fig. 3	$V_{KA} = V_{REF}$ f ≤ 1kHz	, I _K = 1mA to 100mA,		0.2	0.5		0.2	0.5	Ω

25°C free-air temperature, unless otherwise stated.

							LIM	IITS			
SYMBOL	PARAMETER	TEST TEST CONDITIONS		TL431AI			TL431I			UNIT	
					MIN	TYP	MAX	MIN	TYP	MAX	
V _{REF}	Reference input voltage	Fig. 3	V _{KA} = V _{REF}	., I _K = 10mA	2470	2495	2520	2440	2495	2550	mV
V _{REF(dev)}	Deviation of reference input voltage over full temperature range ³	Fig. 3	V _{KA} = V _{REF} T _{amb} = full r	$V_{KA} = V_{REF}$, $I_K = 10$ mA, $T_{amb} = full range2$		5	25		5	30	mV
ΔV_{REF}	Ratio of change in reference input voltage to the change	Fig. 4	L = 10mA	ΔV_{KA} = 10V – V _{REF}		-1.4	-2.7		-1.4	-2.7	mV/V
ΔV_{KA}	in cathode voltage	Fig. 4	$I_{\rm K}$ = 10mA	$K = 10 \text{mA}$ $\Delta V_{\text{KA}} = 36 \text{V} - 10 \text{V}$		-1	-2		-1	-2	111V/V
I _{REF}	Reference input current	Fig. 4	I _K = 10mA,	R ₁ = 10kΩ, R ₂ = ∞		2	4		2	4	μA
I _{REF(dev)}	Deviation of reference input current over full temperature range ³	Fig. 4	I _K = 10mA, T _{amb} = full r	$R_1 = 10kΩ$, $R_2 = ∞$, range ²		0.8	2.5		0.8	2.5	μA
I _{MIN}	Minimum cathode current for regulation	Fig. 3	V _{KA} = V _{REF}			0.4	0.7		0.4	1	μA
I _{OFF}	Off-state cathode current	Fig. 5	V _{KA} = 36V, V _{REF} = 0			0.1	0.5		0.1	1	μA
Z _{KA}	Dynamic impedance ⁴	Fig. 3	$V_{KA} = V_{REF}$ f ≤ 1kHz	, I _K = 1mA to 100mA,		0.2	0.5		0.2	0.5	Ω

NOTES:

2. Full temperature range is -40°C to +85°C for the TL431I and TL431AI, and 0°C to +70°C for the TL431C and TL431AC.

 The deviation parameters V_{REF(dev)} and I_{REF(dev)} are defined as the differences between the maximum and minimum values obtained over the rated termperature range. The average full-range temperature coefficient of the reference input voltage, αV_{REF}, is defined as:

where ΔT_{amb} is the rated operating free-air temperature range of the device.

TL431C, TL431AC, TL431I, TL431AI, LM431AC

 αV_{REF} can be positive or negative depending on whether minimum V_{REF} of maximum V_{REF} , respectively, occurs at the lower temperature. Example: Max V_{REF} = 2496mV at 30°C, Min V_{REF} = 2492mV at 0°C, V_{REF} = 2495mV at 25°C, DTA = 70°C for TL431C.

$$\alpha V_{\mathsf{REF}} \mid = \frac{\left(\frac{4\mathsf{mV}}{2495\mathsf{mV}}\right) \cdot 10^{6}}{70^{\circ}\mathsf{C}} = 23\mathsf{ppm}/^{\circ}\mathsf{C}$$

Because minimum V_{REF} occurs at the lower temperature, the coefficient is positive.

4. The dynamic impedance is defined as: | Z_{KA} | = $\frac{\Delta V_{KA}}{\Delta I_{K}}$

When the device is operating with two external resistors, (see Figure xx), the total dynamic impedance of the circuit is given by: $|Z'| = \frac{\Delta V}{2} \approx |Z_{vv}| \left(1 + \frac{R1}{2}\right)$

$$|Z'| = \frac{\Delta V}{\Delta I} \approx |Z_{KA}| \left(1 + \frac{R1}{R2}\right)$$

PARAMETER MEASUREMENT INFORMATION

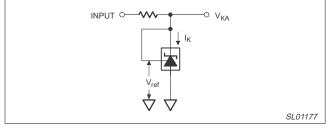


Figure 3. Test Circuit for $V_{KA} = V_{ref}$

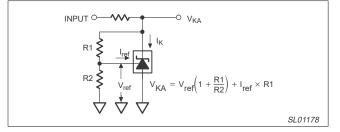


Figure 4. Test Circuit for V_{KA} > V_{ref}

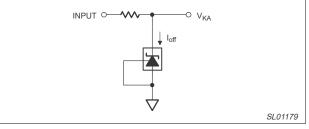


Figure 5. Test Circuit for I_{OFF}

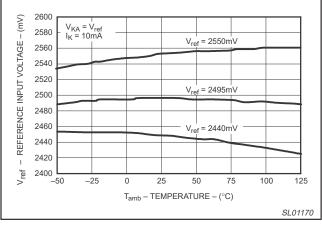


Figure 6. Reference Input Voltage vs. Temperature

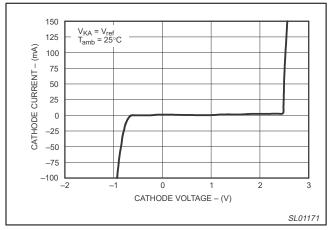


Figure 7. Cathode Current vs. Cathode Voltage

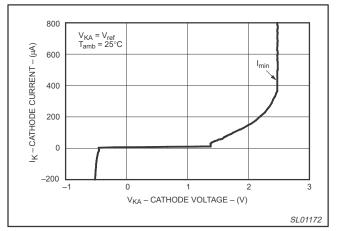
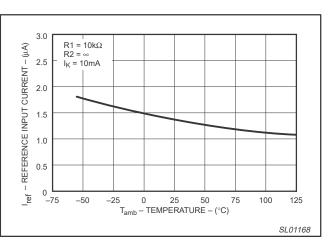



Figure 8. Cathode Current vs. Cathode Voltage

TL431C, TL431AC, TL431I,

TL431AI, LM431AC

Figure 9. Reference Input Current vs. Temperature

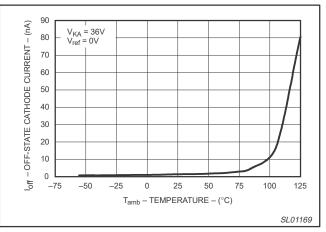


Figure 10. Off-State Cathode Current vs. Temperature

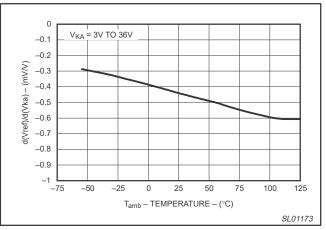
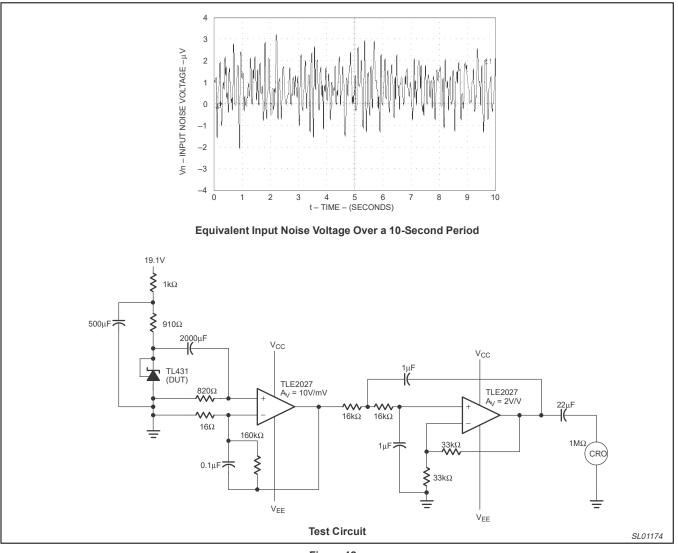



Figure 11. Ratio of Delta Reference Voltage to Delta Cathode Voltage over Temperature

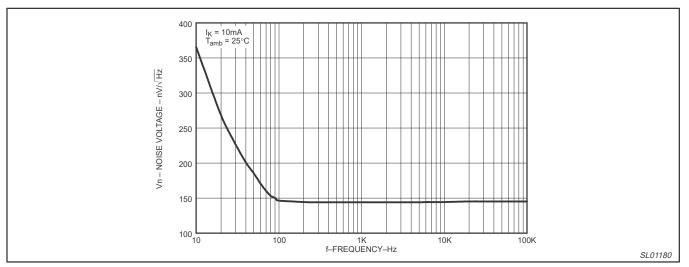
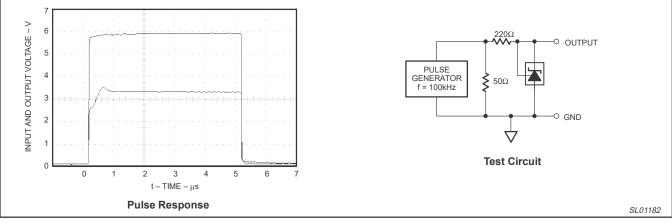



Figure 13. Equivalent Input Noise Voltage vs. Frequency

TL431C, TL431AC, TL431I, TL431AI, LM431AC

TYPICAL CHARACTERISTICS

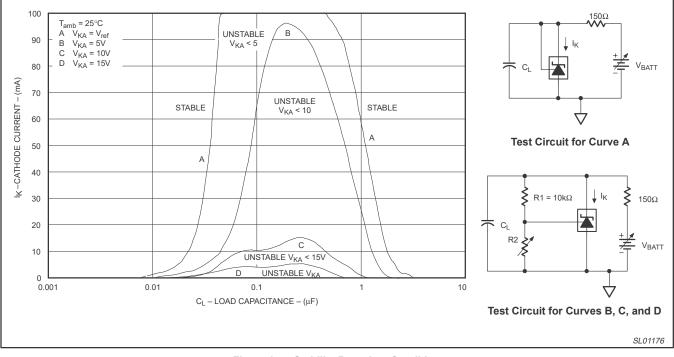


Figure 15. Stability Boundary Conditions

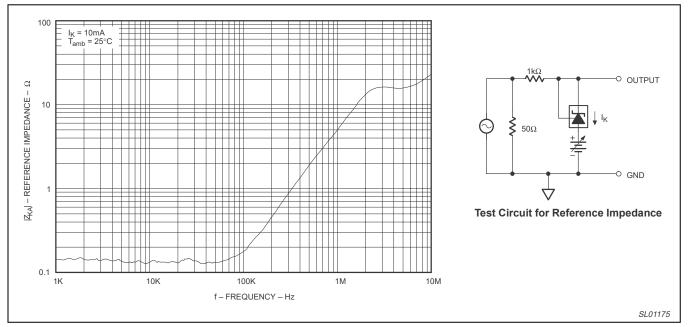


Figure 16. Reference Impedance vs. Frequency

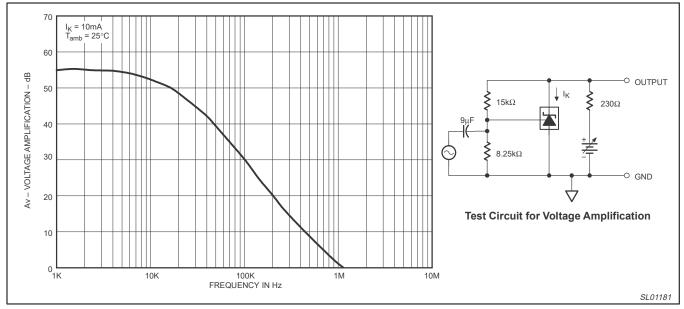
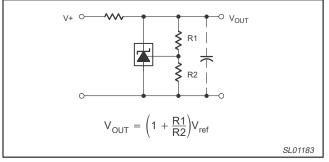



Figure 17. Small-Signal Voltage Amplification vs. Frequency

TL431C, TL431AC, TL431I, TL431AI, LM431AC

TYPICAL APPLICATIONS

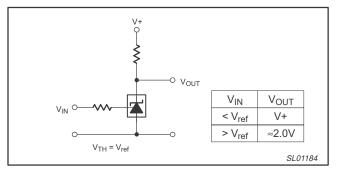


Figure 19. Single-Supply Comparator with Temperature-Compensated Threshold

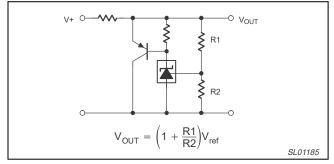


Figure 20. High Current Shunt Regulator

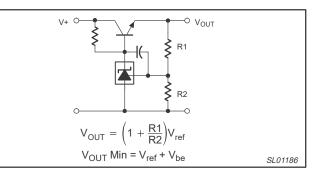


Figure 21. Series Pass Regulator

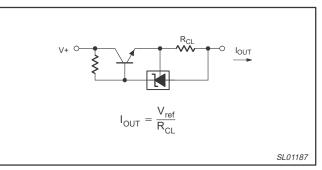
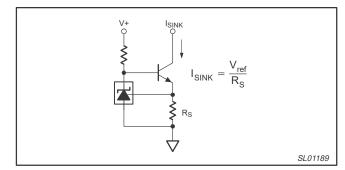
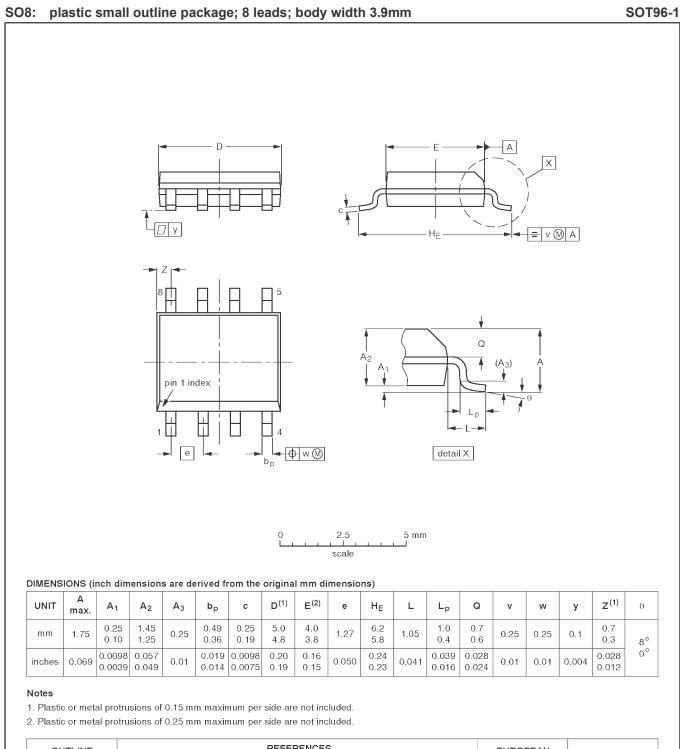
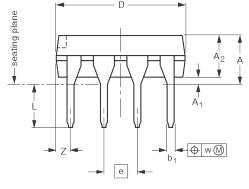
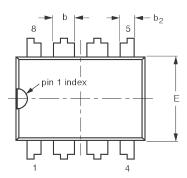
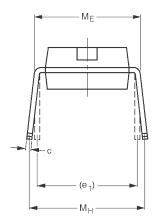


Figure 22. Constant Current Source

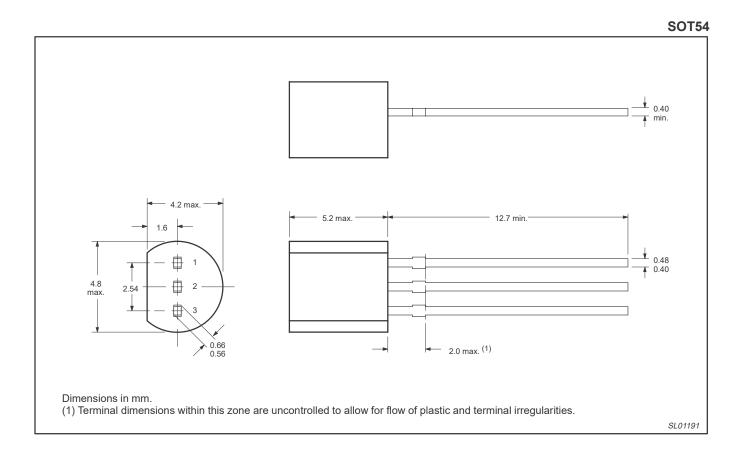

Figure 23. Constant Current Sink




TL431C, TL431AC, TL431I, TL431AI, LM431AC

Adjustable precision shunt regulators

0 5 10 mm ______scale

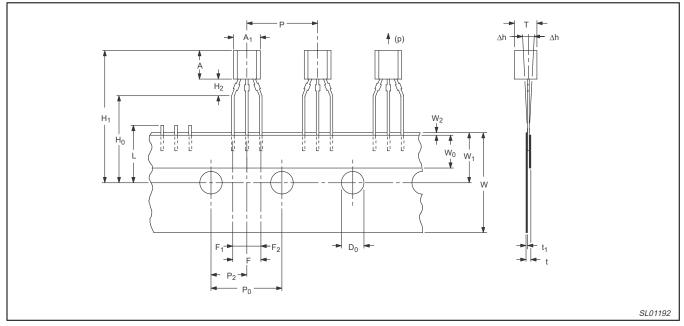

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	b ₂	с	D ⁽¹⁾	Е ⁽¹⁾	е	e ₁	L	Μ _E	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.14	0.53 0.38	1.07 0.89	0.36 0.23	9.8 9.2	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	1.15
inches	0.17	0.020	0.13	0.068 0.045	0.021 0.015	0.042 0.035	0.014 0.009	0.39 0.36	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.045

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFEF	RENCES				
VERSION	SION IEC		EIAJ	PROJECTION	ISSUE DATE		
SOT97-1	050G01	MO-001AN			-92-11-17 95-02-04		

SOT97-1



TO-92

Adjustable precision shunt regulators

TL431C, TL431AC, TL431I, TL431AI, LM431AC

TO-92 transistors on tape

Table 2. Tape specification (TO-92 leaded types)

	DIMENSION		SP	ECIFICA	TIONS		DEMA DIVO
SYMBOL	DIMENSION	MIN.	NOM.	MAX.	TOL.	UNIT	REMARKS
A ₁	Body width	4	-	4.8	-	mm	
А	Body height	4.8		5.2	_	mm	
Т	Body thickness	3.5		3.9	—	mm	
Р	Pitch of component	-	12.7	-	±1	mm	
P ₀	Feed hole pitch	-	12.7	-	±0.3	mm	
	Cumulative pitch error	-	-	-	±0.1	mm	Note 1
P ₂	Feed hole center to component center	-	6.35	-	±0.4	mm	to be measured at bottom of clinch
F	Distance between outer leads	-	5.08	-	+0.6/-0.2	mm	
Δh	Component alignment	-	0	1	-	mm	
W	Tape width	-	18	-	±0.5	mm	
W ₀	Hold-down tape width	-	6	-	±0.2	mm	
W ₁	Hole position	-	9	-	+0.7/-0.5	mm	
W ₂	Hold-down tape position	-	0.5	-	±0.2	mm	
H ₀	Lead wire clinch height	-	16.5	-	±0.5	mm	
H ₁	Component height	-	-	23.25	-	mm	
L	Length of snipped leads	-	-	11	-	mm	
D ₀	Feed hole diameter	-	4	-	±0.2	mm	
t	Total tape thickness	-	-	1.2	-	mm	
F ₁ , F ₂	Lead-to-lead distance	-	-	-	+0.4/-0.2	mm	
H ₂	Clinch height	-	-	-	-	mm	
(p)	Pull-out force	6	-	_	_	N	

NOTE:

1. Measured over 20 devices.

TL431C, TL431AC, TL431I, TL431AI, LM431AC

Tape splicing

Splice the carrier tape on the back and/or front so that the feed hole pitch (P_0) is maintained.

Adjustable precision shunt regulators

Bulk packing

In addition to TO-92 on tape, TO-92 can also be delivered in bulk. Products are packed in boxes in foil and plastic bags with 1,000 pieces to a bag and 5 bags to a box.

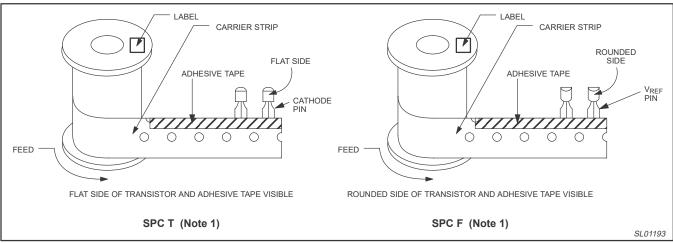


Figure 24. TO-92 Reel Styles

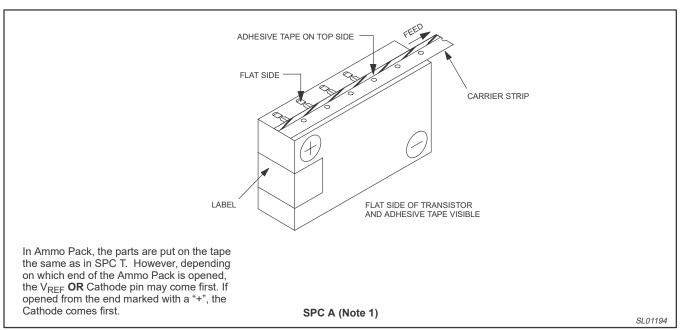


Figure 25. TO-92 Ammo Pack Styles

NOTE:

1. Order SPC F, T or A depending on what is required.

TL431C, TL431AC, TL431I, TL431AI, LM431AC

	DEFINITIONS							
Data Sheet Identification	Definition							
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.						
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.						
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.						

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1997 All rights reserved. Printed in U.S.A.

Let's make things better.

