

TS324

Quad Operating Amplifier

Pin assignment:

1. Output A 2. Input A (-) 3. Input A (+) 4. Vcc 14. Output D 13. Input D (-) 12. Input D (+) 11. Gnd

5. Input B (+) 10. Input C (+) 6. Input B (-) 9. Input C (-)

6. Input B (-) 9. Input C (-) 7. Output B 8. Output C

Supply Voltage Range 3 V to 32V Quad Channel Amplifier

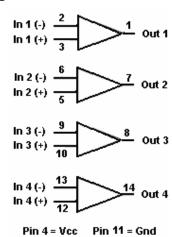
General Description

The TS324 contains four independent high gain operational amplifiers with internal frequency compensation. The four op-amps use a split power supply. The device has low power supply current drain, regardless or the power supply voltage. The low power drain also makes the TS324 a good choice for battery operation.

When your project calls for a traditional op-amp function, now you can streamline your design with a simple single power supply. Use ordinary +5V common to practically any digital system or personal computer application, without requiring an extra 15V power supply just to have the interface electronics you need.

The TS324 is a versatile, rugged workhorse with a thousand-and-one uses, from amplifying signals from a variety of transducers to dc gain blocks, or any op-amp function. The attached pages offer some recipes that will have your project cooking in no time.

The TS358 is offered in 14 pin SOP-14 and DIP-14 package.


Features

- ♦ Single supply operation: 3V to 32V
- Low input bias currents
- Internally compensated
- Common mode range extends to negative supply
- Single and split supply operation

Ordering Information

Part No.	Operating Temp.	Package
TS324CD	0 ~ +70 °C	DIP-14
TS324CS		SOP-14

Block Diagram

Absolute Maximum Rating

Supply Voltage	Vcc, Vcc/Vee	+32 or ±16	Vdc
Differential Input Voltage (note 1)	V_{IDR}	32	Vdc
Input Common Mode Voltage Range (note 2)	V_{ICR}	-0.3 to 32	Vdc
Input Forward Current (note 3)	lif	50	mA
Output Short Circuit Duration	Isc	Continuous	mA
Operating Junction Temperature Range	T _J	0 ~ +125	°C
Storage Temperature Range	T _{STG}	-65 ~ +150	°C

NOTE:

- 1. Split Power Supplies.
- 2. For supply. Voltages less than 32V for the PJ324 the absolute maximum input voltage is equal to the supply voltage.
- 3. This input current will only exist when the voltage is negative at any of the input leads. Normal output states will reestablish when the input voltage returns to a voltage greater than -0.3V.

Electrical Characteristics

(V_{CC} = 5V, Ta=25 $^{\circ}$ C; unless otherwise specified.)

Characteristics	Symbol	Min	Тур	Max	Unit
Input Offset Voltage					
$V_{\text{CC}}\text{=}~5.0\text{V}$ to 30V, $V_{\text{IC}}\text{=}~0\text{V}$ to Vcc -1.7 V, Vo= 1.4V, $R_{S}\text{=}~0\Omega$	Vio		2.0	7.0	mV
$T_{LOW} \le Ta \le T_{HIGH}$				9.0	
Average Temperature Coefficient of Input Offset Voltage	ΔΙίο/ΔΤ		7.0		uV/°C
Input Offset Current	lio		5.0	50	nA
$T_{LOW} \le Ta \le T_{HIGH}$				150	
Average Temperature Coefficient of input Offset Current	ΔΙίο/ΔΤ		10		pA/°C
Input Bias Current	I _{IB}		45	-250	uA
$T_{LOW} \le Ta \le T_{HIGH}$			50	-500	
Input Common-Mode Voltage Range (Note1)	V _{ICR}				
V _{CC} = 30 V		0		28.3	V
V_{CC} = 30 V, $T_{LOW} \le Ta \le T_{HIGH}$		0		28	
Differential Input Voltage Range	V_{IDR}			V_{CC}	V
Large Signal Open-Loop Voltage Gain	A _{VOL}				
R_L = 2.0K, V_{CC} =15V, For Large V_O Swing,		25	100		V/mV
$T_{LOW} \le Ta \le T_{HIGH}$		15			
Channel Separation			-120		dB
1.0 KHz to 20KHz					
Common Mode Rejection Ratio	CMRR	65	70		dB
$R_S \le 10 \text{ k}\Omega$					
Power Supply Rejection Ratio	PSRR	65	100		dB
Output Voltage High Limit	V _{OH}				V
V_{CC} = 30 V, R_L = 2 k Ω		26			
V_{CC} = 30 V, R_L = 10 k Ω		27	28		
Output Voltage Low Limit	V _{OL}		5.0	20	mV
V_{CC} = 5.0 V, R_L = 10 k Ω					
Output Source Current V _{ID} =+1.0V,V _{CC} =15V	I _{O+}	20	40		mA
Output Sink Current	I _{O-}				
V_{ID} = -1.0 V, V_{CC} = 15 V		10	20		mA
V_{ID} = -1.0 V, V_{O} = 200 mV		12	50		uA
Output Short Circuit to Ground (Note 2)	I _{os}		40	60	mA
Power Supply Current ,	I _{CC}				
V_{CC} = 30 VV_{O} = 0 V , R_{L} = ∞			1.5	3.0	mA
V_{CC} = 5.0 V, V_{O} = 0 V, R_{L} = ∞			0.7	1.2	

Notes:

^{1.} The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is Vcc 17V, but either or both inputs can go to +32V.

^{2.} Short circuits from the output to Vcc can cause excessive heating and eventual destruction. Destructive dissipation can recruit from simultaneous shorts on all amplifiers.

Circuit Description

The TS324 made using four internally compensated, two-stage operational amplifiers. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance, a smaller compensation capacitor (only 5.0pF) can be employed, thus saving chip area. Another feature of this input stage is that the input common mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single-ended converter. The second stage consists of a standard current source load amplifier stage.

Each amplifier is biased from an internal-voltage regulator, and which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection.

Electrical Characteristics Curve

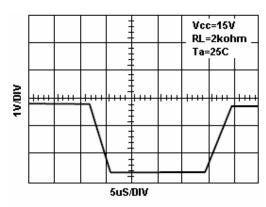


Figure 1. large signal voltage follower response

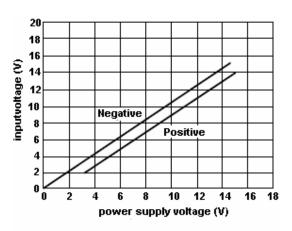


Figure 2. input voltage range

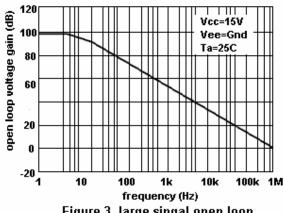


Figure 3. large singal open loop voltage gain

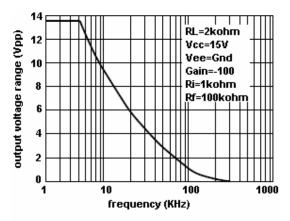
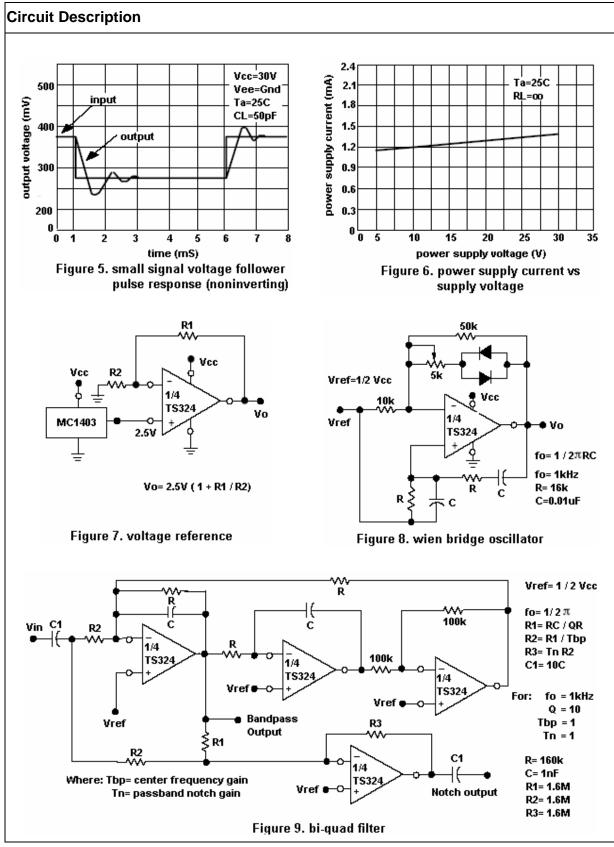



Figure 4. larger signal frequency response

TS324 4-6 2003/12 rev. A

Circuit Description (continued)

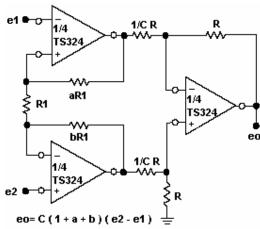
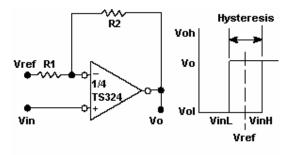



Figure 10. high impedance differential amplifier

VinL= R1 / (R1 + R2) * (Vol - Vref) + Vref VinH= R1 / (R1 + R2) * (Voh - Vref) + Vref H= R1 / (R1 + R2) * (Voh - Vol)

Figure 11. comparator with hysteresis

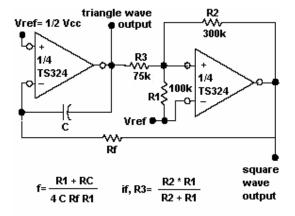
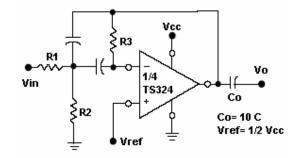
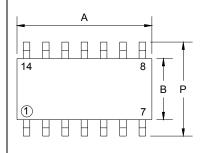



Figure 12. function generator

Given: fo= center frequency A(fo)= gain at center frequency

Choose value fo, C Then: R3= Q / π fo C R1= R3 / 2A(fo) R2= R1 * R2 / 4Q2 *R1 - R3


For less than 10% error from operational amplifier, Qo fo / BW < 0.1 Where fo and BW are expressed in Hz

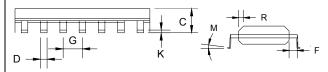
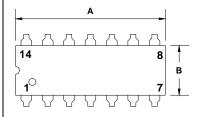
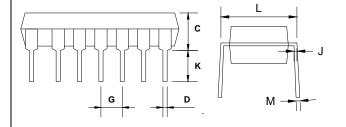

If source impendance varies, filter may be preceded with Voltage follower buffer stabilize filter parameters

Figure 13. multiple feedback bandpass filter


SOP-14 Mechanical Drawing



	SOP-14 DIMENSION				
DIM	MILLIM	ETERS	INCHES		
DIIVI	MIN	MAX	MIN	MAX	
Α	8.55	8.75	0.337	0.344	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27 (typ)		0.05	(typ)	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

DIP-14 Mechanical Drawing

DIP-14 DIMENSION					
DIM	MILLIMETERS		INCHES		
	MIN	MAX	MIN	MAX	
Α	18.55	19.56	0.730	0.770	
В	6.22	6.48	0.245	0.255	
С	3.18	4.45	0.125	0.135	
D	0.35	0.55	0.019	0.020	
G	2.54 (typ)		0.10 (typ)		
J	0.29	0.31	0.011	0.012	
K	3.25	3.35	0.128	0.132	
L	7.75	8.00	0.305	0.315	
М	-	10°	-	10°	