

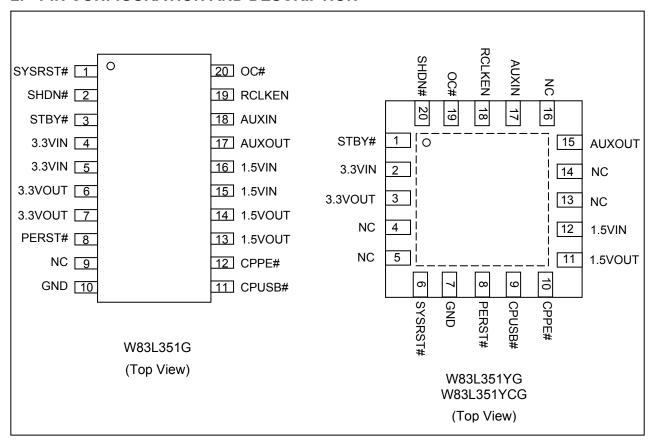
Winbond ExpressCard™ Power Interface Switch W83L351 Series

<u>W83L351 Series</u> Data Sheet Revision History

NO	PAGES	DATES	VERSION	VERSION ON WEB	MAIN CONTENTS
1.	All	Apr. /07	1.0	N.A	All versions before 1.0 are preliminary versions.
2	28	July 5, 2007	1.1		Update the ordering information and add the taping spec.
3					
4					
5					
6					
7					

Table of Contents-

1.	FEATURES	1
2.	PIN CONFIGURATION AND DESCRIPTION	2
3.	APPLICATION CIRCUIT	5
4.	INTERNAL BLOCK DIAGRAM	6
5.	ABSOLUTE MAXIMUM RATINGS	7
6.	RECOMMENDED OPERATING CONDITIONS	8
7.	ELECTRICAL CHARACTERISTICS	9
8.	SWITCHING CHARACTERISTICS	12
9.	FUNCTIONAL TRUTH TABLES	13
10.	TYPICAL OPERATING WAVEFORMS	15
11.	EXPRESSCARD TIMING DIAGRAMS	20
12.	PACKAGE DIMENSION	24
13.	ORDERING INFORMATION	28
14.	TOP MARKING SPECIFICATION	29



1. FEATURES

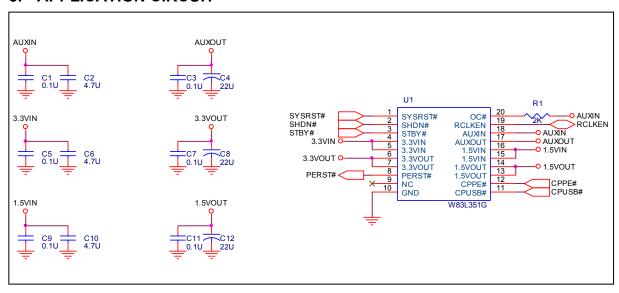
- Meets the ExpressCard™ Standard (ExpressCard|34 or ExpressCard|54)
- Compliant with the ExpressCard™ Compliance Checklists
- ExpressCard Compliance ID: EC100098 (W83L351G), EC100115 (W83L351YG/YCG)
- Fully Satisfies the ExpressCard™ Implementation Guidelines
- Supports System with WAKE Function
- TTL-Logic Compatible Inputs
- Short Circuit and Thermal Protection
- 0°C to 70°C Ambient Operating Temperature Range
- Available in a 20-pin TSSOP or a 20-pin QFN

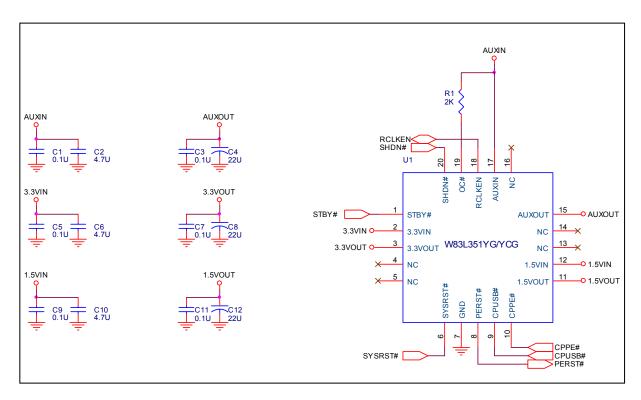
2. PIN CONFIGURATION AND DESCRIPTION

	Р	IN					
SYMBOL	G	YG	I/O	FUNCTION			
	G	YCG					
SYSRST#	1	6	l ^(*)	System Reset input – active low, logic level signal. Internally pulled up to AUXIN. This input is driven by the host system and directly affects PERST#. Asserting SYSRST# (logic low) forces PERST# to assert. RCLKEN is not affected by the assertion of SYSRST#.			
SHDN#	2	20	l ^(*)	Shutdown input – active low, logic level signal. Internally pulled up to AUXIN. When asserted (logic low), this input instructs the power switch to turn off all voltage outputs and the discharge FETs are activated.			

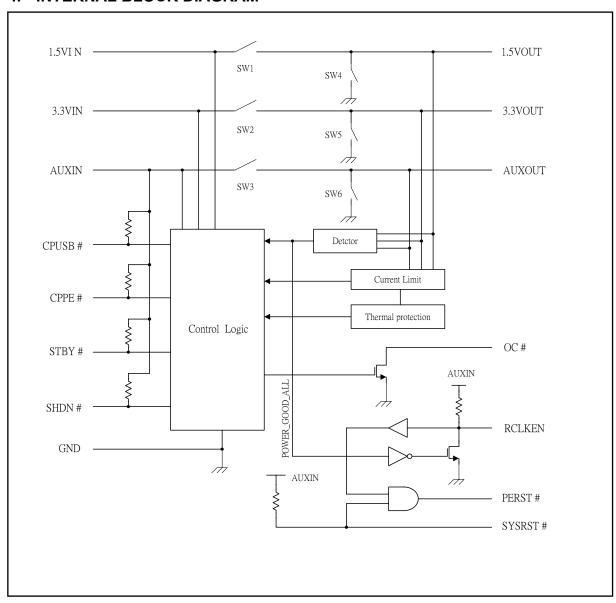
Continued

	Р	IN		
SYMBOL	G	YG YCG	I/O	FUNCTION
STBY#	3	1	l ^(*)	Standby input – active low, logic level signal. Internally pulled up to AUXIN. When asserted (logic low) after the card is inserted, this input places the power switch in standby mode by turning off the 3.3V and 1.5V power switches and keeping the AUX switch on. If the signal is asserted prior to the card being present, STBY# places the power switch in OFF Mode by turning off the AUX, 3.3V, and 1.5V power switches.
				A logic level power good (with delay). When powered up, this output remains asserted (logic level low) until all power rails are within the tolerance. Once all power rails are within the tolerance and RCLKEN has been released (logic high), PERST# is deasserted (logic high) after a time delay, as shown in the parametric table. When powered down, this output is asserted whenever any of the power rails drops below their voltage tolerance.
				The PERST# signal is an output from the host system and an input to the ExpressCard module. This signal is only used by PCI Express-based modules and its function is to place the ExpressCard module in a reset state.
PERST#	8	8	0	During power up, power down, or whenever power to the ExpressCard module is not stable or not within voltage tolerance limits, the ExpressCard standard requires that PERST# be asserted. As a result, this signal also serves as a power-good indicator to the ExpressCard module, and the relationship between the power rails and PERST# are explicitly defined in the ExpressCard standard.
				The host can also place the ExpressCard module in a reset state by asserting a system reset SYSRST#. This system reset generates a PERST# signal to the ExpressCard module without disrupting the voltage rails. This is normally called a warm reset. However, in a cold start situation, the system reset can also be used to prolong the assertion time of PERST#.
CPUSB#	11	9	l ^(*)	Card Present input for USB cards. Internally pulled up to AUXIN. A logic low level on this input indicates that the card present supports the USB functions. When a card is inserted, CPUSB# is physically connected to ground if the card supports USB functions.
CPPE#	12	10	l ^(*)	Card Present input for PCI Express cards. Internally pulled up to AUXIN. A logic low level on this input indicates that the card present supports the PCI Express functions. When a card is inserted, CPPE# is physically connected to ground if the card supports PCI Express functions.


Continued


PIN		N		
SYMBOL		YG	I/O	FUNCTION
	G	YCG		
RCLKEN	19	18	I ^(*) /O	Reference Clock Enable signal. As an output, it is a logic level power good to the host (no delay – open drain). As an input, if the signal is kept inactive (low) by the host, PERST# will be prevented from being de-asserted. Internally pulled up to AUXIN. This pin serves both as an input and an output. When powered up, a discharge FET keeps this signal at a low state as long as any of the output power rails is out of their tolerance range. Once all output power rails are within the tolerance, the switch releases RCLKEN, allowing it to transit to a high state (internally pulled up to AUXIN).
				The transition of RCLKEN from a low to a high state starts an internal timer for the purpose of de-asserting PERST#. As an input, RCLKEN can be kept low to delay the start of the PERST# internal timer. Because RCLKEN is internally connected to a discharge FET, this pin can only be driven low and should never be driven high as a logic input. When an external circuit drives this pin low, RCLKEN becomes an input; otherwise, this pin is an output.
OC#	20	19	OD	Over current status output (open drain). This pin is an open-drain output. When any of the three power switches (AUX, 3.3V, and 1.5V) is in an over current condition, OC# is asserted (logic low) by an internal discharge FET with a deglitch delay. Otherwise, the discharge FET is open, and the pin can be pulled up to a power supply through an external resistor.
3.3VIN	4, 5	2	I	Primary voltage source, 3.3V input for 3.3VOUT
1.5VIN	15,16	12	ı	Secondary voltage source, 1.5V input for 1.5VOUT
AUXIN	18	17	I	Auxiliary voltage source, AUX input for AUXOUT and chip power.
3.3VOUT	6, 7	3	0	Switched output that delivers 0V, 3.3V or high impedance to the card.
1.5VOUT	13, 14	11	0	Switched output that delivers 0V, 1.5V or high impedance to the card.
AUXOUT	17	15	0	Switched output that delivers 0V, AUX or high impedance to the card.
GND	10	7		Ground
NC	9	4, 5, 13, 14, 16		No connection

Notice: (*) Be aware that no input pins can be driven HIGH before the Auxiliary voltage is VALID.


3. APPLICATION CIRCUIT

4. INTERNAL BLOCK DIAGRAM

5. ABSOLUTE MAXIMUM RATINGS

ITEM	SYMBOL	RATING	UNIT	
	V _{I(3.3VIN)}	-0.3 to 6	V	
Input Voltage	V _{I(1.5VIN)}	-0.3 to 6	V	
	$V_{I(AUXIN)}$	-0.3 to 6	V	
Logic Input/Output Voltage	-0.3 to 6	V		
	V _{O(3.3VOUT)}	-0.3 to 6	V	
Output Voltage	V _{O(1.5VOUT)}	-0.3 to 6	V	
	$V_{O(AUXOUT)}$	-0.3 to 6	V	
	I _{O(3.3OUT)}	Internally limited		
Output Current	I _{O(1.5OUT)}	Internally limited		
	I _{O(AUXOUT)}	Internally	limited	
Operating Temperature Range	T_{opt}	0 to 70	°C	
	Human Body Mode	±2	kV	
Electrostatic discharge protection	Machine Mode	±200	V	
	Latch-Up	±100	mA	

6. RECOMMENDED OPERATING CONDITIONS

ITEM			MIN	MAX	UNIT
	V _{I(3.3VIN)}	3.3VIN is only required for its respective functions	3	3.6	
Input Voltage	V _{I(1.5VIN)}	1.5VIN is only required for its respective functions	1.35	1.65	V
	$V_{I(AUXIN)}$	AUXIN is required for all circuit operations	3	3.6	
	I _{O(3.3VOUT)}		0	1.3	Α
Continuous output current	I _{O(1.5VOUT)}	TJ=120°C	0	650	mA
	I _{O(AUXOUT)}		0	275	mA

7. ELECTRICAL CHARACTERISTICS

 $T_A = 25^{\circ}\text{C}$, $V_{\text{I (3.3VIN)}} = V_{\text{I (AUXIN)}} = 3.3 \text{ V}$, $V_{\text{I (1.5VIN)}} = 1.5 \text{ V}$, $V_{\text{I (SHDN#)}}$, $V_{\text{I (STBY#)}} = 3.3 \text{ V}$, $V_{\text{I (CPPE#)}} = V_{\text{I (CPUSB#)}} = 0 \text{ V}$, $V_{\text{I (SYSRST)}} = 3.3 \text{ V}$, OC# and RCLKEN and PERST# are open, all voltage outputs unloaded (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
	3.3VIN to 3.3VOUT with		TA = 25°C, $I = 1305$ mA each		90			
Power switch resistance	two switches	on for dual	TA = 70°C, I = 1305 mA each			105		
	1.5VIN to 1.5		TA = 25°C, I = 660 mA each		90		mΩ	
	two switches	on for dual	TA = 70°C, I = 660 mA each			110		
	AUXIN to AU		TA = 25°C, I = 285 mA each		110			
	two switches	on for dual	TA = 70°C, I = 285 mA each			126		
I _{OS} Short –	I _{OS(3.3VOUT)} (st value)	eady-state		1.3 5	1.7	2.5	Α	
circuit output	I _{OS(1.5VOUT)} (st value)	eady-state	Output powered into a short	0.6 7	1.1	1.3	Α	
current	I _{OS(AUXOUT)} (stevalue)	eady-state		275	400	600	mA	
Thermal	Trip point, T _J		Rising temperature, not in over current condition		155		90	
Shutdown			Over current condition		130		°C	
	Hysteresis				10			
	Normal operation	$I_{I(AUXIN)}$	Outputs are unloaded		140	210		
		I _{I(3.3VIN)}	(include CPPE# and CPUSB# logic pull-up		10. 5	15	uA	
		I _{I(1.5VIN)}	currents)		2.2	10	1	
		I _{I(AUXIN)}	CPUSB# = CPPE# = 0 V		170	270		
	Shutdown	I _{I(3.3VIN)}	SHDN# = 0 V (discharge FETs are on) (include		6	10		
I _I Total input quiescent	mode	I _{I(1.5VIN)}	CPPE# and CPUSB# logic pull-up currents and SHDN# pull-up current)		2.2	10	uA	
current (Note: 1)		I _{I(AUXIN)}	CPUSB# = CPPE# = 0 V		170	270		
(Note. 1)	Standby	I _{I(3.3VIN)}	STBY# = 0 V (include CPPE# and CPUSB# logic		6	10	uA	
	mode (1)	I _{I(1.5VIN)}	pull-up currents and STBY# pull-up current)		2.2	10	u/\	
	_	I _{I(AUXIN)}	CPUSB# = CPPE# = 0 V		160	210		
	Standby mode (2)	I _{I(3.3VIN)}	3.3VIN = 0 V (include CPPE# and CPUSB# logic		0	0.1	uA	
	(-)	I _{I(1.5VIN)}	pull-up currents)		2.2	10		

Continued

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
	04 "	I _{I(AUXIN)}	CPUSB# = CPPE# = 0 V		160	210		
	Standby mode (3)	I _{I(3.3VIN)}	1.5VIN = 0 V (include CPPE# and CPUSB# logic		6	10	uA	
		I _{I(1.5VIN)}	pull-up currents)		0	0.1		
lu (EMP)	I _{I(AU}	XIN)	SHDN# = 3.3 V, CPUSB# =		22	50		
I _{lkg(FWD)} Forward	I _{I(3.3}	VIN)	CPPE# = 3.3 V (no card present, discharge FETs are		0	50	uA	
leakage current	I _{I(1.5}	VIN)	on);current measured at input pins, includes RCLKEN pull- up current		0	50	uA	
LOGIC SECT	ION (SYSRS)	r, shdn#, st	BY#, PERST#, RCLKEN , OC#	, CPU	SB#, C	PPE#)		
			SYSRST# = 3.6 V, sinking		0			
	I _(SYSRS#)	Input	SYSRST# = 0 V, sourcing	10	17. 5	30	uA	
			SHDN# = 3.6 V, sinking		0			
	I _(SHDN#)	Input	SHDN# = 0 V, sourcing	10	17. 5	30	uA	
Logic input supply	I _(STBY#)		STBY# = 3.6 V, sinking		0			
current		Input	STBY# = 0 V, sourcing	10	17. 5	30	uA	
	I _(RCLKEN)	Input	RCLKEN = 0 V, sourcing	10	18	30	uA	
	I _(CPUSB#) or	innute	CPUSB# or CPPE# = 0 V, sinking		0		uA	
	I _(CPPE#)	inputs	CPUSB# or CPPE# = 3.6 V, sourcing	10	17. 5	30	uA	
Logic input	High	level		2	10 18 30 0 0 10 17. 5 30		V	
voltage	Low	level				0.8	V	
RCLKEN ou voltage	tput low	Output	IO(RCLKEN) = 60 μA			0.4	V	
	sertion thresho		3.3VOUT falling	2.7		3		
voltage (PERST# asserted when any output voltage falls below the		AUXOUT falling	2.7		3	V		
threshold)	go rano porori		1.5VOUT falling	1.2	1.2			
PERST# as voltage	sertion delay	from output	3.3VOUT, AUXOUT, 1.5VOUT falling			500	ns	
PERST# c		delay from	3.3VOUT, AUXOUT, or 1.5VOUT rising within tolerance	1	20		ms	

Continued

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
PERST# assertion delay from SYSRST#	Max time from SYSRST asserted		25	500	ns
t _{W(PERST#)} PERST# minimum pulse width	3.3VOUT, AUXOUT, or 1.5VOUT falling out of tolerance or triggered by SYSRST#	100	340		us
PERST# output low voltage	- 500 uA			0.4	V
PERST# output high voltage	I _{O(PERST#)} = 500 μA	2.4			V
OC# output low voltage	I _{O(OC#)} = 2 mA			0.4	V
OC# deglitch	Falling into or out of an over current condition		20		ms
UNDERVOLTAGE LOCKOUT (UVLO)					
3.3VIN UVLO	3.3VIN level, below which 3.3VIN and 1.5VIN switches are off	2.6		2.9	
1.5VIN UVLO	1.5VIN level, below which 3.3VIN and 1.5VIN switches are off	1.0		1.25	V
AUXIN UVLO	AUXIN level, below which all switches are off	2.6		2.9	
UVLO hysteresis			100		mV

Note 1: In the Shutdown mode or the Standby mode (1), the AUXIN quiescent current includes a normal operation current, SHDN# or STBY# internal pull-up current and RCLKEN internal pull-up current. In the Standby modes (2) & (3), the AUXIN quiescent current includes a normal operation current and a RCLKEN internal-up current.

8. SWITCHING CHARACTERISTICS

 $T_A = 25^{\circ}\text{C}$, $V_{\text{I (3.3VIN)}} = V_{\text{I (AUXIN)}} = 3.3 \text{ V}$, $V_{\text{I (1.5VIN)}} = 1.5 \text{ V}$, $V_{\text{I (SHDN#)}}$, $V_{\text{I (STBY#)}} = 3.3 \text{ V}$, $V_{\text{I (CPPE#)}} = V_{\text{I (CPUSB#)}} = 0 \text{ V}$, $V_{\text{I (SYSRST)}} = 3.3 \text{ V}$, OC# and RCLKEN and PERST# are open, all voltage outputs unloaded (unless otherwise noted)

DADAI	WETED	TEST COMPLIANCE	MINI	TVD	MAY	LINUT	
PARAI	METER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
t _r	3.3VIN to 3.3VOUT	$C_{L(3.3VOUT)}=0.1uF, I_{O(3.3VOUT)}=0A$	0.1		6		
	AUXIN to AUXOUT	$C_{L(AUXVOUT)}=0.1uF, I_{O(AUXOUT)}=0A$	0.1		6		
	1.5VIN to 1.5VOUT	C _{L(1.5VOUT)} =0.1uF, I _{O(1.5VOUT)} =0A	0.1		6		
	3.3VIN to 3.3VOUT	C _{L(3.3VOUT)} =100uF, R _L =V _{I(3.3VIN)} /1A	0.1		6	ms	
Output rise times	AUXIN to AUXOUT	C _{L(AUXVOUT)} =100uF, R _L =V _{I(AUXININ)} /0.250A	0.1		6		
	1.5VIN to 1.5VOUT	C _{L(1.5VOUT)} =100uF, R _L =V _{I(1.5VIN)} /0.500A	0.1		6		
t _f	3.3VIN to 3.3VOUT	$C_{L(3.3VOUT)} = 0.1 uF, I_{O(3.3VOUT)} = 0A$	10		150		
Output fall times	AUXIN to AUXOUT	C _{L(AUXVOUT})=0.1uF, I _{O(AUXOUT)} =0A	10		150	us	
when card removed (both	1.5VIN to 1.5VOUT	$C_{L(1.5VOUT)} = 0.1 uF, I_{O(1.5VOUT)} = 0A$	10		150		
CPUSB# and	3.3VIN to 3.3VOUT	$C_{L(3.3VOUT)}$ =20uF, $I_{O(3.3VOUT)}$ =0A	5		30		
CPPE# de-	AUXIN to AUXOUT	$C_{L(AUXVOUT)}$ =20uF, $I_{O(AUXOUT)}$ =0A	5		30	ms	
asserted)	1.5VIN to 1.5VOUT	C _{L(1.5VOUT)} =20uF, I _{O(1.5VOUT)} =0A	5		30		
	3.3VIN to 3.3VOUT	$C_{L(3.3VOUT)}=0.1uF, I_{O(3.3VOUT)}=0A$	10		150		
	AUXIN to AUXOUT	C _{L(AUXVOUT})=0.1uF, I _{O(AUXOUT)} =0A	10		150	us	
t _f Output fall times	1.5VIN to 1.5VOUT	C _{L(1.5VOUT)} =0.1uF, I _{O(1.5VOUT)} =0A	10		150		
when SHDN#	3.3VIN to 3.3VOUT	$C_{L(3.3VOUT)}$ =100uF, R_L = $V_{I(3.3VIN)}$ /1A	0.1		3		
asserted (card is present)	AUXIN to AUXOUT	$C_{L(AUXVOUT)}$ =100uF, R _L =V _{I(AUXININ)} /0.250A	0.1		3	ms	
	1.5VIN to 1.5VOUT	$C_{L(1.5VOUT)}$ =100uF, R _L = $_{VI(1.5VIN)}$ /0.500A	0.1		3		
	3.3VIN to 3.3VOUT	$C_{L(3.3VOUT)} = 0.1 uF, I_{O(3.3VOUT)} = 0A$	0.1		6		
	AUXIN to AUXOUT	$C_{L(AUXVOUT)}=0.1uF, I_{O(AUXOUT)}=0A$	0.1		6		
$T_{pd(on)}$	1.5VIN to 1.5VOUT	$C_{L(1.5VOUT)}$ =0.1uF, $I_{O(1.5VOUT)}$ =0A	0.1		6		
Turn on	3.3VIN to 3.3VOUT	$C_{L(3.3VOUT)}$ =100uF, R_L = $V_{I(3.3VIN)}$ /1A	0.1		6	ms	
propagation delay	AUXIN to AUXOUT	$C_{L(AUXVOUT)}$ =100uF, R _L =V _{I(AUXININ)} /0.250A	0.1		6		
	1.5VIN to 1.5VOUT	C _{L(1.5VOUT)} =100uF, R _L = _{VI(1.5VIN)} /0.500A	0.1		6		

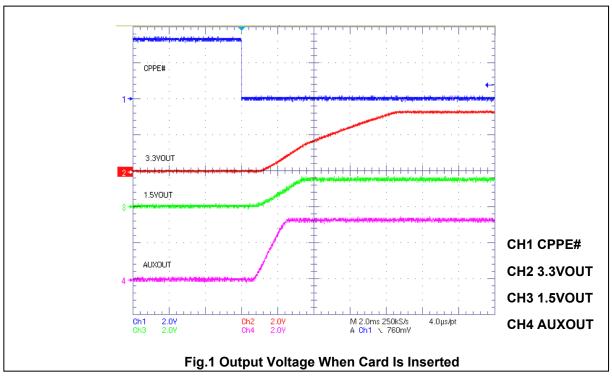
9. FUNCTIONAL TRUTH TABLES

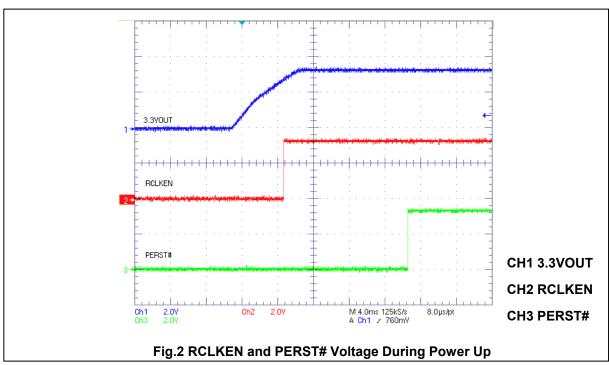
Truth Table for Voltage Outputs

VOLT	VOLTAGES INPUTS (1)			LOGIC INPUTS			VOLTAGE OUTPUTS(2)		
AUXIN	3.3VIN	1.5VIN	SHDN#	STBY#	CP# ⁽⁴⁾	AUXOUT	3.3VOUT	1.5VOUT	MODE ⁽³⁾
Off	Χ	Х	X	Х	X	Off	Off	Off	Off
On	Off	Off	1	1	X	Off	Off	Off	Off
On	On	On	1	0	0	Off	Off	Off	Off ⁽⁵⁾
On	On	On	1	0	Х	Off	Off	Off	Off ⁽⁶⁾
On	Х	Х	0	Х	Х	GND	GND	GND	Shutdown
On	Х	Х	1	Х	1	GND	GND	GND	No Card
On	On	On	1	0	0	On	Off	Off	Standby
On	On → Off	On → Off	1	1	0	On	Off	Off	Standby ⁽⁷⁾
On	On	On	1	1	0	On	On	On	Card Inserted

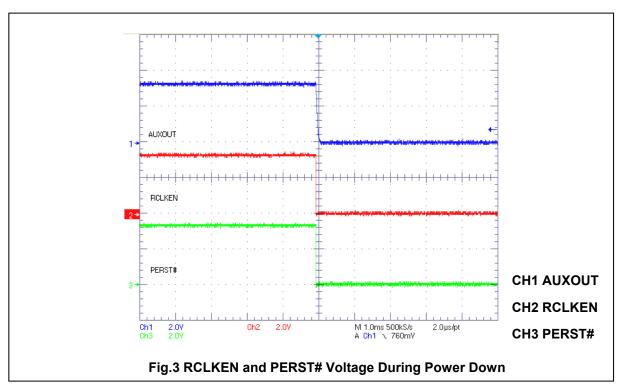
- (1) For input voltages, *On* means the respective input voltage is higher than its turn on threshold voltage; otherwise, the voltage is *Off* (for AUX input, *Off* means the voltage is close to zero volt).
- (2) For output voltages, *On* means the respective power switch is turned on so the input voltage is connected to the output; *Off* means the power switch and its output discharge FET are both off; *Gnd* means the power switch is off but the output discharge FET is on so the voltage on the output is pulled down to 0 V.
- (3) Mode assigns each set of input conditions and respective output voltage results to a different name. These modes are referred to as input conditions in the following Truth Table for Logic Outputs.
- (4) CP# = CPUSB# and CPPE# equal to 1 when both CPUSB# and CPPE# signals are logic high, or equal to 0 when either CPUSB# or CPPE# is low.
- (5) STBY# is asserted (logic low) prior to the card being present.
- (6) STBY# is asserted (logic low) prior to the voltage inputs being present.
- (7) The card is inserted prior to the removal of the Primary or Secondary power (either 3.3VIN or 1.5VIN or both) at the input of the ExpressCard power switch, then only the primary and secondary power (both 3.3VOUT and 1.5VOUT) are removed and the auxiliary power is sent to the ExpressCard slot.

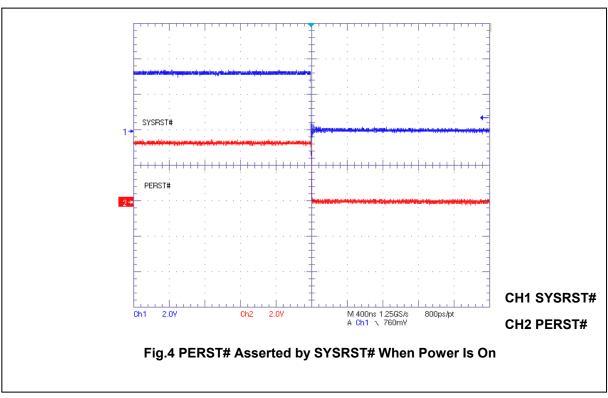
Truth Table for Logic Outputs

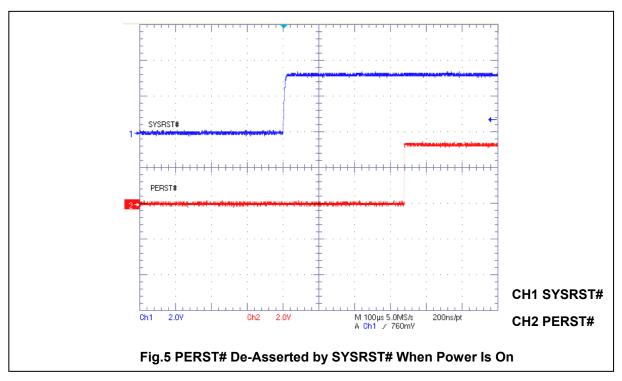

II	NPUT CONDITIONS	LOGIC OUTPUTS			
MODE	SYSRST#	RCLKEN (1)	PERST#	RCLKEN (2)	
Off		x	0	0	
Shutdown	X				
No Card	^				
Standby					
Card Inserted	0	Hi - Z	0	1	
	0	0	0	0	
	1	Hi - Z	1	1	
	1	0	0	0	

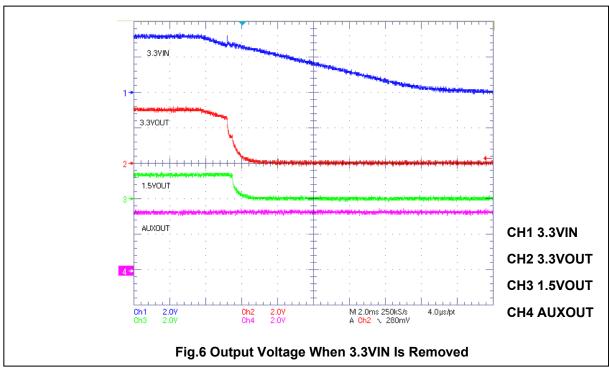

⁽¹⁾ RCLKEN as a logic input in this column. RCLKEN is an I/O pin and it can be driven low externally, left open, or connected to high-impedance terminals, such as the gate of a MOSFET. It must not be driven high externally.

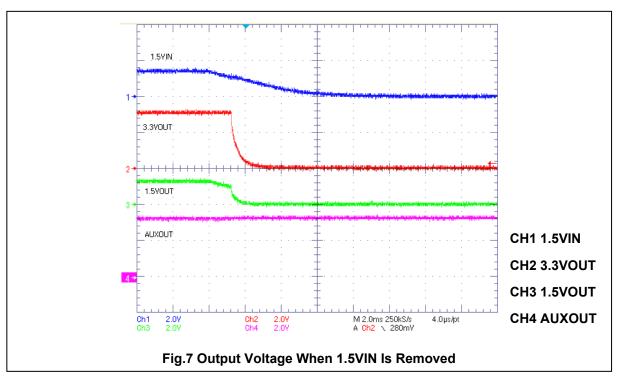
⁽²⁾ RCLKEN as a logic output in this column.

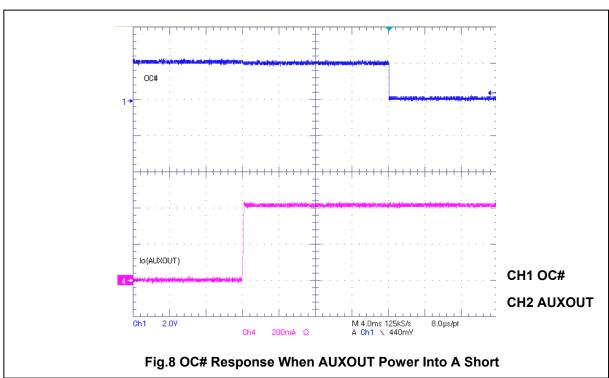


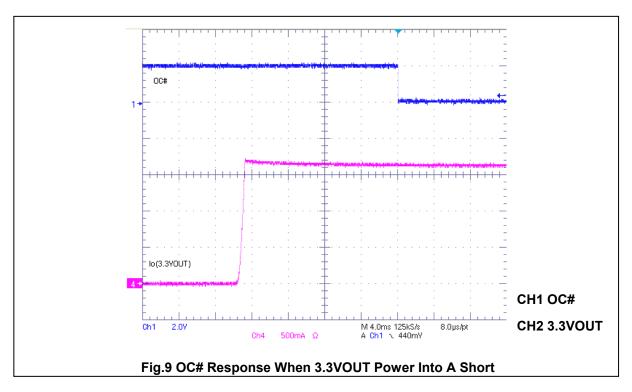

10. TYPICAL OPERATING WAVEFORMS

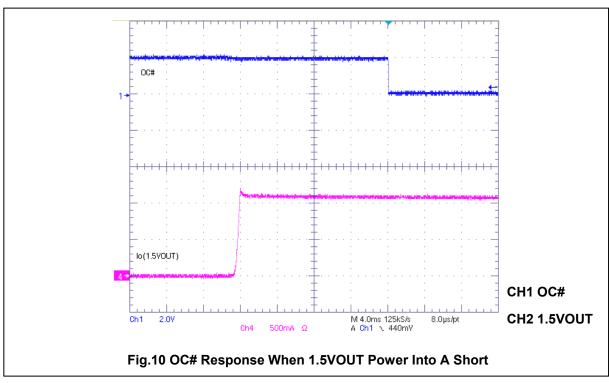


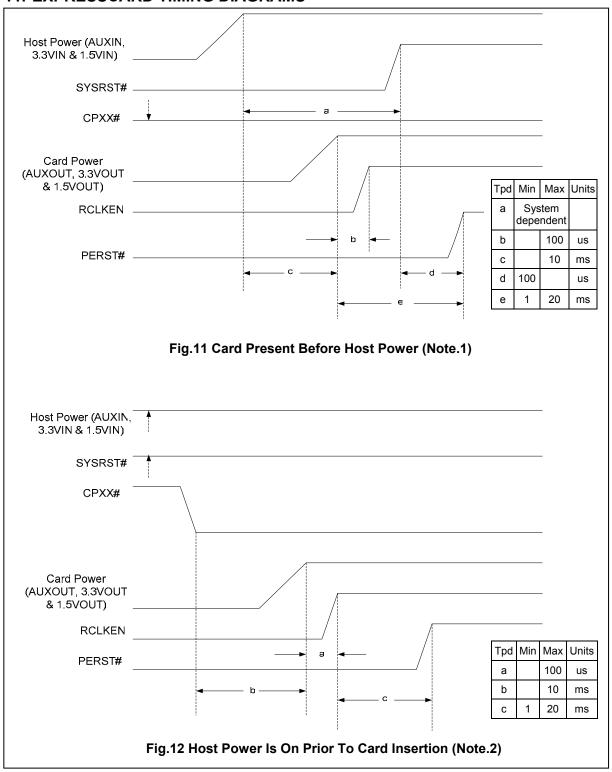


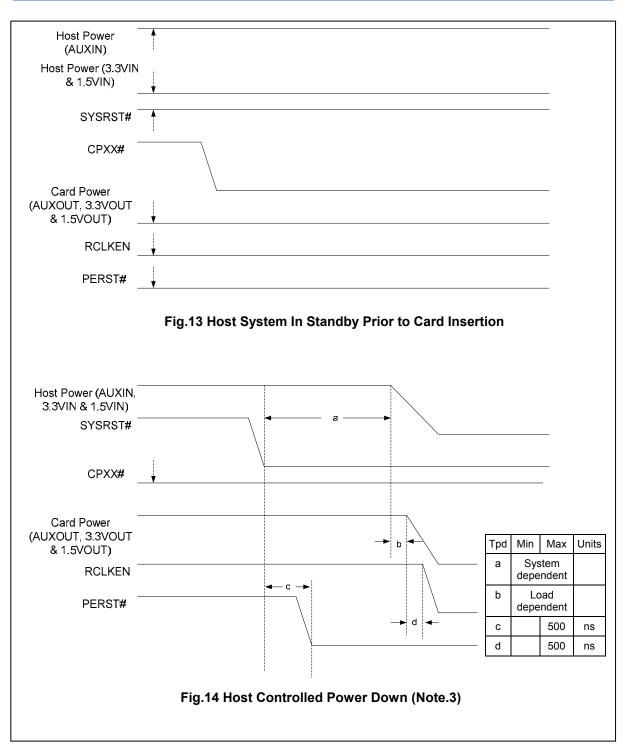


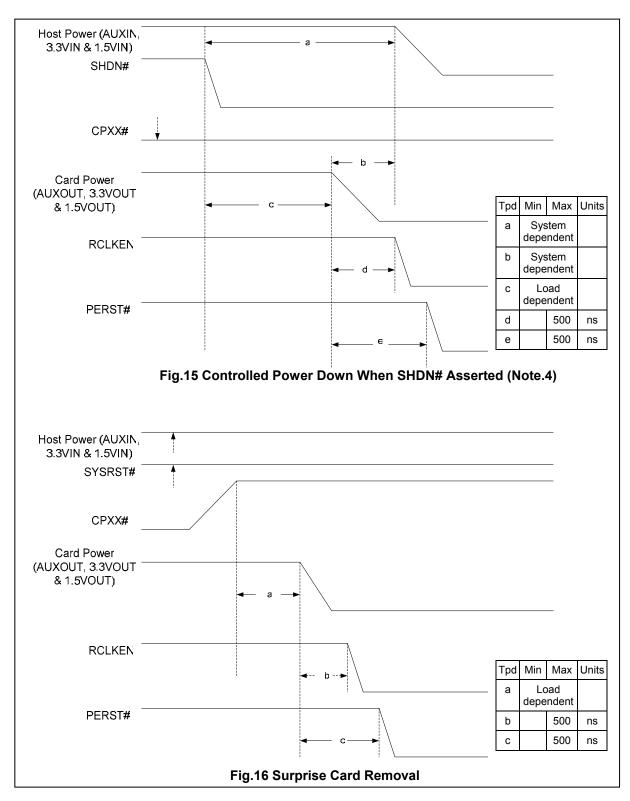


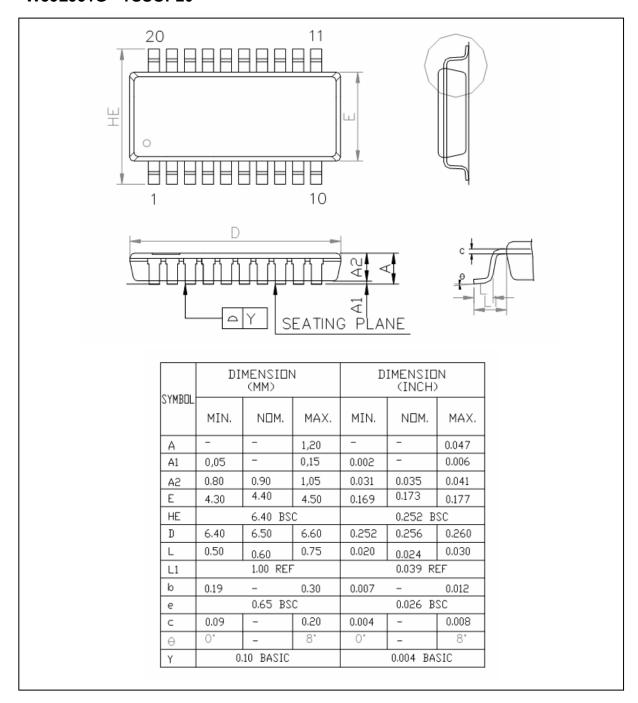






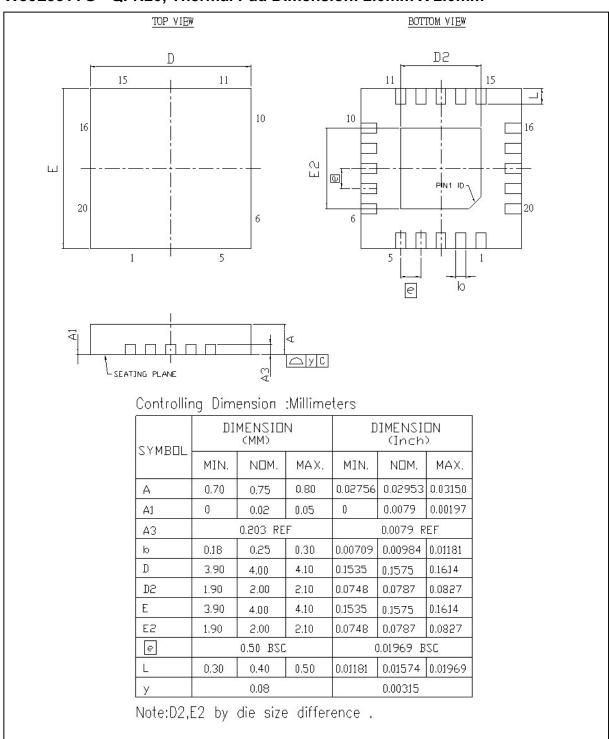



11. EXPRESSCARD TIMING DIAGRAMS

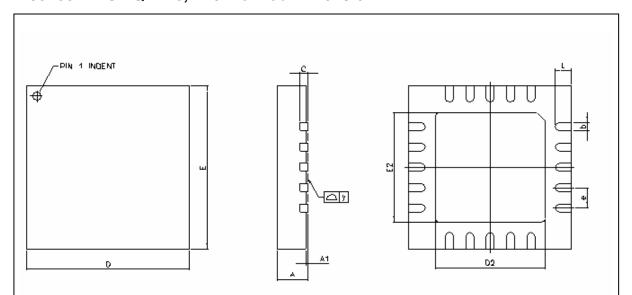


- Note.1: According to the electrical specifications of ExpressCard Standard, the minimum propagation delay time of e (Power stable to PERST# inactive) is 1ms.
- Note.2: RCLKEN could be treated as a power good signal when card power is over 86% of nominal voltage.
- Note.3: The propagation delay time of c is SYSRST# assertion to PERST# assertion. The propagation delay time of d is card power is under 86% of nominal voltage to RCLKEN de-assertion.
- Note 4: RCLEKN de-assertion is prior to PERST# assertion when card power lost in any situation.

Publication Date: July 5, 2007 Revision 1.10

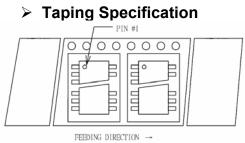


12. PACKAGE DIMENSION W83L351G - TSSOP20

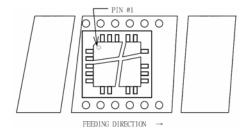


W83L351YG - QFN20, Thermal Pad Dimension: 2.0mm X 2.0mm

W83L351YCG - QFN20, Thermal Pad Dimension: 2.7mm X 2.7mm



Controlling Dimension :Millimeters


SYMBOLS	DIMENSIONS IN MILLIMETERS			DIMENSIONS IN INCH		
	MIN	NOM	MAX	MIN	NOM	MAX
А	0.70	0.75	0.80	0.02755	0.02952	0.03149
A1	0.00	0.02	0.05	0.00000	0.00078	0.00196
ь	0.15	0.23	0.30	0.00590	0.00905	0.01181
С	0.20 REF.			0.00787 REF.		
D	3.90	4.00	4,10	0.15354	0.15748	0,16141
D2	2 65	2.70	2.75	0.10433	0.10629	0.10826
E	3.95	4.00	4.05	0.15551	0.15748	0.15944
E2	2.65	2.70	2.75	0.10433	0.10629	0.10826
e		0,50			0.01968	
L	0.35	0.40	0.45	0.01377	0.01574	0,01771
у	0.00		0.075	0.00000		0.00295

Note:D2,E2 by die size difference .

20 Pin TSSOP Package

20 Pin QFN Package

13. ORDERING INFORMATION

PART NUMBER	PACKAGE TYPE	SUPPLIED AS	PRODUCTION FLOW
W83L351G	20PIN TSSOP (Pb-free package)	E Shape: 74 units/Tube T Shape: 2,500 units/T&R	Commercial, 0°C to +70 °C
W83L351YG	20PIN QFN (Pb-free package) Thermal Pad Size: 2.0X2.0 mm²	E Shape: 490 units/Tray T Shape: 4,000 units/T&R	Commercial, 0°C to +70 °C
W83L351YCG	20PIN QFN (Pb-free package) Thermal Pad Size: 2.7X2.7 nm²	E Shape: 490 units/Tray T Shape: 4,000 units/T&R	Commercial, 0°C to +70 °C

14. TOP MARKING SPECIFICATION

W83L351G 212345678 606XARA

Left line: Winbond logo

1st line: W83L351G – the part number

2nd line: Chip lot no

3rd line: Tracking code 606 X ARA

606: Packages assembled in Year 06', week 06

X: Assembly house ID ARA: The IC version

Winbond 351YG 636XARB Winbond 351YCG 636XARB

1st line: Winbond – company name

2nd line: 351YG/351YCG – the part number

3rd line: Tracking code <u>636 X ARB</u>

636: Packages assembled in Year 06', week 36

X: Assembly house ID
ARB: The IC version

Important Notice

Winbond products are not designed, intended, authorized or warranted for use as components in systems or equipment intended for surgical implantation, atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, or for other applications intended to support or sustain life. Further more, Winbond products are not intended for applications wherein failure of Winbond products could result or lead to a situation wherein personal injury, death or severe property or environmental damage could occur.

Winbond customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Winbond for any damages resulting from such improper use or sales.

Headquarters

No. 4, Creation Rd. III, Science-Based Industrial Park, Hsinchu, Taiwan TEL: 886-3-5770066

FAX: 886-3-5665577 http://www.winbond.com.tw/

Taipei Office 9F, No.480, Rueiguang Rd.,

Neihu District, Taipei, 114, Taiwan, R.O.C. TEL: 886-2-8177-7168 FAX: 886-2-8751-3579

Winbond Electronics Corporation America

2727 North First Street, San Jose,

CA 95134, U.S.A. TEL: 1-408-9436666 FAX: 1-408-5441798

Winbond Electronics Corporation Japan

7F Daini-ueno BLDG, 3-7-18 Shinyokohama Kohoku-ku, Yokohama, 222-0033 TEL: 81-45-4781881 FAX: 81-45-4781800

Winbond Electronics (Shanghai) Ltd. 27F, 2299 Yan An W. Rd. Shanghai,

200336 China TEL: 86-21-62365999

FAX: 86-21-62365998

Winbond Electronics (H.K.) Ltd. Unit 9-15, 22F, Millennium City, No. 378 Kwun Tong Rd., Kowloon, Hong Kong TEL: 852-27513100 FAX: 852-27552064

Please note that all data and specifications are subject to change without notice.

All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.